Skip to main content

Position Paper: Sodium Metabolism: The Sodium-Potassium Membrane Pump and Volume Overload Hypertension

  • Conference paper
Frontiers in Hypertension Research

Abstract

The mechanism of salt-dependent, volume-overloaded hypertension is particularly troublesome (1–3). Renin levels are low, and the responses to converting enzyme inhibitors and angiotensin antagonists are minimal. Catecholamine levels are not helpful; in fact, plasma catecholamine levels decrease as a function of salt intake in normal subjects. Long-term autoregulation subsequent to increased cardiac output and overperfusion of tissues has been considered, but increase in total peripheral resistance and blood pressure have been observed in the absence of increased cardiac output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haddy FJ, Overbeck JW (1976) The role of humoral factors in volume expanded hypertension. Life Sci 19: 935–948

    Article  PubMed  CAS  Google Scholar 

  2. Haddy F, Pamnani M, Clough D (1978) The so-dium-potassium pump in volume expanded hypertension. Clin Exp Hypertension 1: 295–336

    Article  Google Scholar 

  3. Haddy FJ, Pamnani MB, Clough DL (1979) Humoral factors and the sodium-potassium pump in volume expanded hypertension. Life Sci 24: 2105–2118

    Article  PubMed  CAS  Google Scholar 

  4. Overbeck HW, Pamnani MB, Akera T, Brody TM, Haddy FJ (1976) Depressed function of a ouabain- sensitive sodium-potassium pump in blood vessels from renal hypertensive dogs. Circ Res 38 (Suppl II): 48–52

    PubMed  CAS  Google Scholar 

  5. Clough DL, Pamnani MB, Overbeck HW, Haddy FJ (1977) Decreased myocardial Na,K-ATPase in rats with one-kidney Gold-blatt hypertension. Fed Proc 36: 491

    Google Scholar 

  6. Clough DL, Pamnani MB, Overbeck HW, Haddy FJ (1977) Decreased Na,K-ATPase in right ventricular myocardium of rats with one-kidney Gold- blatt hypertension. Physiologist 20: 18

    Google Scholar 

  7. Pamnani MB, Clough DL, Haddy FJ (1978) Al-tered activity of sodium-potassium pump in arteries of rats with steroid hypertension. Clin Sci Mol Med 55: 41S–43S

    CAS  Google Scholar 

  8. Clough DL, Pamnani MB, Haddy FJ (1978) De-creased Na,K-ATPase activity in left ventricular myocardium of rats with one-kidney DOCA-saline hypertension. Clin Res 26: 361

    Google Scholar 

  9. Huot S, Pamnani M, Clough D, Haddy F (1980) Depressed Na+-K+ pump activity in tail arteries of reduced renal mass hypertensive rats. Fed Proc 39: 1188

    Google Scholar 

  10. Nivatpumin T, Scheuer J, Bhan AK, Penpargkul S (1973) Effects of acute uremia on myocardial function in rats. Clin Res 21: 952

    Google Scholar 

  11. Pamnani MB, Clough DL, Haddy FJ (1979) Na+- K+ pump activity in tail arteries of spontaneously hypertensive rats. Jpn Heart J 20(Suppl I): 228– 230

    Google Scholar 

  12. Pamnani M, Clough D, Huot S, Haddy F (1980) Vascular Na+-K+ pump in Dahl S and R rats. Fed Proc 39: 812

    Google Scholar 

  13. Jones AW, Hart HG (1975) Altered ion transport in aortic smooth muscle during deoxycorticosterone acetate hypertension in the rat. Circ Res 37: 333–341

    PubMed  CAS  Google Scholar 

  14. Tsay SL, Jones AW (1978) Effect of pressure vs DOCA on 42K efflux in vascular smooth muscle from the rat. Fed Proc 37: 902

    Google Scholar 

  15. Brace RA, Anderson DK, Chen WT, Scott JB, Haddy FJ (1974) Local effects of hypokalemia on coronary resistance and myocardial contractile force. Am J Physiol 227: 590–597

    PubMed  CAS  Google Scholar 

  16. Haddy FJ, Scott JB, Florio MA, Daugherty RM Jr, Huizenga JN (1963) Local vascular effects of hypokalemia, alkalosis, hypercalcemia, and hypomagnesemia. Am J Physiol 204: 202–212

    PubMed  CAS  Google Scholar 

  17. Chen WT, Brace RA, Scott JB, Anderson DK, Haddy FJ (1972) The mechanism of the vasodilator action of potassium. Proc Soc Exp Biol Med 140: 820 - 824

    PubMed  CAS  Google Scholar 

  18. Anderson DK, Roth SA, Brace RA, Radowski D, Haddy FJ, Scott JB (1972) Effect of hypokalemia and hypomagnesemia produced by hemodialysis on vascular resistance in canine skeletal muscle. Circ Res 31: 165–173

    PubMed  CAS  Google Scholar 

  19. Brace RA (1974) Time course and mechanisms of the acute effects of hypokalemia and hyperkalemia on vascular resistance. Proc Soc Exp Biol Med 145: 1389–1394

    PubMed  CAS  Google Scholar 

  20. Nyhof R, Dabney J, Haddy FJ (1978) Effect of ouabain on skin and skeletal muscular vascular beds in the dog forelimb. Proc Soc Exp Biol Med 158: 161–165

    PubMed  CAS  Google Scholar 

  21. Haddy FJ (1975) Potassium and blood vessels. Life Sci 16: 1489–1498

    Article  PubMed  CAS  Google Scholar 

  22. Leonard E (1957) Alteration of contractile response of artery strips by a potassium-free solution, cardiac glycosides and changes in stimulation frequency. Am J Physiol 189: 185–190

    PubMed  CAS  Google Scholar 

  23. Brender D, Vanhoutte PM, Shepherd JT (1969) Potentiation of adrenergic venomotor responses in dogs by cardiac glycosides. Circ Res 25: 597–606

    PubMed  CAS  Google Scholar 

  24. O’Neill J, Inciarte D, Swindall B, Haddy F (1980) Effect of ouabain on norepinephrine vasoconstriction in the dog forelimb. Fed Proc 39: 582

    Google Scholar 

  25. Haddy FJ, Scott JB (1973) Mechanism of the acute pressor action of hypokalemia, hypomagnesemia, and hypo-osmolality. Am Heart J 85: 655–661

    Article  PubMed  CAS  Google Scholar 

  26. Guyton AC, Coleman TG, Cowley AW Jr, Manning RD Jr, Norman RA Jr, Ferguson JD (1974) A systems analysis approach to understanding long- range arterial blood pressure control and hypertension. Circ Res 35: 159–176

    Google Scholar 

  27. Hendrickx H, Casteels R (1974) Electrogenic sodium pump in arterial smooth muscle cells. Pflueg-ers Arch 346: 299–306

    Article  CAS  Google Scholar 

  28. Anderson DK (1976) Cell potential and sodium-potassium pump in vascular smooth muscle. Fed Proc 35: 1294–1297

    PubMed  CAS  Google Scholar 

  29. Siegel G, Roedel H, Nolte J, Hofer HW, Bertsche O (1976) In: Bulbring E, Shuba MF (eds) Physiology of smooth muscle. Raven Press, New York, pp 19–39

    Google Scholar 

  30. Hermsmeyer K (1976) Electrogenesis of increased norepinephrine sensitivity of arterial vascular muscle in hypertension. Circ Res 38: 362–367

    PubMed  CAS  Google Scholar 

  31. Haddy FJ (1978) The mechanism of potassium vasodilatation. In: Vanhoutte PM, Leusen I (eds) Mechanisms of vasodilatation. Karger, Basel, pp 200–205

    Google Scholar 

  32. Reuter H, Blaustein MP, Haeusler G (1973) Na- Ca exchange and tension development in arterial smooth muscle. Philos Trans R Soc Lond [Biol] 265: 87–94

    Article  CAS  Google Scholar 

  33. Sharma VK, Banerjee SP (1977) Inhibition of [H]norepinephrine uptake in peripheral organs of some mammalian species by ouabain. Eur J Pharmacol 41: 417–429

    Article  PubMed  CAS  Google Scholar 

  34. Macknight ADC, Leaf A (1977) Regulation of cellular volume. Physiol Rev 57: 510–573

    PubMed  CAS  Google Scholar 

  35. Overbeck HW, Pamnani MB, Ku DD (1977) Suppression of the ouabain-sensitive sodium-potassium pump in arterial smooth muscle. Proc Intl Union Physiol Sci 13: 573

    Google Scholar 

  36. Pamnani MB, Clough DL, Steffen RP, Haddy FJ (1978) Depressed Na+-K+ pump activity in tail arteries from acutely volume expanded rats. Physiologist 21: 88

    Google Scholar 

  37. Simon G (1979) Angiopathic serum factor in peri-nephritic hypertensive dogs. Hypertension 1: 197– 201

    Google Scholar 

  38. Blaustein M (1977) Sodium ions, calcium ions, blood pressure regulation, and hypertension: A reassessment and a hypothesis. Am J Physiol 232: CI 65–C173

    Google Scholar 

  39. Gruber KA, Buckalew VM Jr (1978) Further characterization and evidence for a precursor in the formation of plasma antinatriferic factor. Proc Soc Exp Biol Med 159: 463–67

    PubMed  CAS  Google Scholar 

  40. Bealer S, Haywood JR, Johnson AK, Gruber, KA, Buckalew VM, Brody M J (1979) Impaired natriure-sis and secretion of natriuretic hormone in rats with lesions of the anteroventral 3rd ventricle. Fed Proc 38: 1232

    Google Scholar 

  41. Epstein M (1976) Cardiovascular and renal effects of head-out water immersion in man. Circ Res 39: 619–628

    PubMed  CAS  Google Scholar 

  42. Tobian L (1960) Interrelationship of electrolytes, juxtaglomerular cells and hypertension. Physiol Rev 40: 280–312

    PubMed  CAS  Google Scholar 

  43. Edmundson RPS, Thomas RD, Hilton PJ, Patrick J, Jones NF (1975) Abnormal leukocyte composition and sodium transport in essential hypertension. Lancet 1: 1003–1009

    Article  Google Scholar 

  44. Araoye MA, Khatri IM, Yao LL, Freis ED (1978) Leukocyte intracellular cations in hypertension: Effect of antihypertensive drugs. Am Heart J 96: 731– 738

    Google Scholar 

  45. Tartagni F, Ambrosioni E, Montebugnoli L, Magnani B (1978) A new method for intralymphocytic sodium concentration. In: Proceedings of the fifth meeting of the international society on hypertension. Clin Sci Mol Med 55: 268

    Google Scholar 

  46. Garay RP, Meyer P (1979) A new test showing abnormal net Na+ and K+ fluxes in erythrocytes of essential hypertensive patients. Lancet 1: 349–353

    Article  PubMed  CAS  Google Scholar 

  47. Borghetti A, Bruschi G, Mutti A, Biggi A, Coruzzi P, Novarini A (1978) Abnormalities of body electrolytes and aldosterone secretion in essential hypertension. In: Proceedings of the fifth meeting of the international society on hypertension, Clin Sci Mol Med 55: 37

    Google Scholar 

  48. Luft, FC, Grim CE, Willis LR, Higgins JT, Weinberger MH (1977) Natriuretic response to saline infusion in normotensive and hypertensive man. Circulation 55: 779–784

    PubMed  CAS  Google Scholar 

  49. Viskoper JR, Czaczkes JW, Schwartz N, Ullmann TD (1971) Natriuretic activity of a substance isolated from human urine during the excretion of a salt load. Comparison of hypertensive and normotensive subjects. Nephron 8: 540–548

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag New York Inc.

About this paper

Cite this paper

Haddy, F.J., Pamnani, M.B., Clough, D.L. (1981). Position Paper: Sodium Metabolism: The Sodium-Potassium Membrane Pump and Volume Overload Hypertension. In: Laragh, J.H., Bühler, F.R., Seldin, D.W. (eds) Frontiers in Hypertension Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5899-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5899-5_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5901-5

  • Online ISBN: 978-1-4612-5899-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics