Advertisement

Facilitated Oxygen Diffusion by Oxygen Carriers

  • Jonathan B. Wittenberg
  • Beatrice A. Wittenberg
Part of the Topics in Environmental Physiology and Medicine book series (TEPHY)

Abstract

Diffusion is a slow process. Oxygen has only a very limited solubility in water. Consequently, the rate of diffusion of oxygen into respiring cells limits the size of cells and limits the rate at which they can do sustained work. In those vertebrate muscles which are dedicated to sustained activity, the red muscles and red fibers in muscles of mixed fiber type, every muscle cell is in contact with at least one and as many as ten capillaries at its periphery. The problem of oxygen delivery to the tissue is reduced to a question of oxygen movement through the cytoplasm of each cell. Populations of separated individual cells can be prepared from the heart and liver of adult animals. Oxygen is supplied to these cells from a homogeneous surrounding medium whose oxygen pressure can be controlled experimentally. In this essay we focus attention on these two favorable preparations and on the legume root nodule and consider only noninvasive probes of intracellular oxygen pressure.

Keywords

Nitrogen Fixation Oxygen Uptake Oxygen Pressure Oxygen Carrier Oxygen Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anversa, P., Loud, A. V., Giacomelli, F., and Wiener, J. (1978). Absolute morpho- metric study of myocardial hypertrophy in experimental hypertension. II. Ultrastructure of myocytes and interstitium. Lab. Invest. 38: 597–609.PubMedCrossRefGoogle Scholar
  2. 2.
    Appleby, C. A. (1969). Electron transport systems of Rhizobium japonicum. I. Heme- protein P-450, other CO-reactive pigments, cytochromes and oxidases in bacteroids N2-fixing root nodules. Biochim. Biophys. Acta 172: 71–87.PubMedCrossRefGoogle Scholar
  3. 3.
    Appleby, C. A. (1969). Electron transport systems of Rhizobium japonicum. II. Rhizobium hemoglobin, cytochromes and oxidases in free-living (cultured) cells. Biochim. Biophys. Acta 172: 88–105.PubMedCrossRefGoogle Scholar
  4. 4.
    Appleby, C. A. (1969). Properties of leg- hemoglobin in vivo and its isolation as ferrous oxyhemoglobin. Biochim. Biophys. Acta 188: 222–229.PubMedGoogle Scholar
  5. 5.
    Appleby, C. A. (1977). Function of P-450 and other cytochromes in Rhizobium respiration. pp. 11–20. In: Functions of Alternative Terminal Oxidases. H. Degn, D. Lloyd, G. C. Hill (editors), vol. 49, Colloquium B 6, Federation of European Biochemical Societies, 11th Meeting. New York: Pergamon Press.Google Scholar
  6. 6.
    Appleby, C. A. (1979). The structure and reactivity of leghemoglobin, a monomeric hemoglobin. Proceedings of the 11th IUPAC International Symposium on the Chemistry of Natural Products. R. Vlahov (editor). In press.Google Scholar
  7. 7.
    Appleby, C. A., Bergersen, F. J., Macnicol, P. K., Turner, G. L., Wittenberg, B. A., and Wittenberg, J. B. (1976). Role of leghemoglobin in symbiotic nitrogen fixation. In: Proceedings of the First International Symposium on Nitrogen Fixation, W. E. Newton and C. J. Nyman (editors). Pullman, Washington: Washington State University Press, pp 274–292.Google Scholar
  8. 8.
    Appleby, C. A., Turner, G. L., and Macnicol, P. K. (1975). Involvement of oxyleghemoglobin and cytochrome P-450 in an efficient oxidative phosphorylation pathway which supports nitrogen fixation in Rhizobium. Biochim. Biophys. Acta 387: 461–474.PubMedCrossRefGoogle Scholar
  9. 9.
    Astrand, I., Astrand, P., Christensen, E. H., and Hedman, R. (1960). Myohemoglobin as an oxygen store in man. Acta Physiol. Scand. 48: 454–460.PubMedCrossRefGoogle Scholar
  10. 10.
    Aviram, I., Wittenberg, B. A., and Wittenberg, J. B. (1978). The reaction of ferrous leghemoglobin with hydrogen peroxide to form leghemoglobin(IV). J. Biol. Chem. 253: 5685–5689.PubMedGoogle Scholar
  11. 11.
    Bergersen, F. J. (1978). Leghemoglobin, oxygen supply and nitrogen fixation: Studies with soybean nodules. In: J. Dobereiner, R. H. Burris, A. Hollaender (editors), Limitations and Potentials for Biological Nitrogen Fixation in the Tropics. New York: Plenum Press, pp 247–261.Google Scholar
  12. 12.
    Bergersen, F. J., and Goodchild, D. J. (1973). Aeration pathways in soybean root nodules. Aust. J. Biol. Sci. 26: 229–240.Google Scholar
  13. 13.
    Bergersen, F. J., and Turner, G. L. (1975). Leghemoglobin and the supply of 02 to nitrogen-fixing root nodule bacteroids: Studies of an experimental system with no gas phase. J. Gen. Microbiol. 89: 31–47.Google Scholar
  14. 14.
    Bergersen, F. J., and Turner, G. L. (1975). Leghemoglobin and the supply of oxygen to nitrogen-fixing root nodule bacteroids: Presence of two oxidase systems and ATP production at low free oxygen concentration. J. Gen. Microbiol. 91: 345–354.PubMedGoogle Scholar
  15. 15.
    Bergersen, F. J., Turner, G. L., and Appleby, C. A. (1973). Studies on the physiological role of leghemoglobin in soybean root nodules. Biochim. Biophys. Acta 292: 271–282.PubMedCrossRefGoogle Scholar
  16. 16.
    Bishop, S. P., and Drummond, J. L. (1979). Surface morphology and cell size measurement of isolated rat cardiac myocytes. J. Mol. Cell. Cardiol. 11: 423–433.PubMedCrossRefGoogle Scholar
  17. 17.
    Bolender, R. P., Paumgartner, D., Losa, G., Muellener, D., and Weibel, E. R. (1978). Integrated stereological and biochemical studies on hepatocyte membranes. I. Membrane recoveries in subcellular fractions. J. Cell Biol. 77: 565–583.PubMedCrossRefGoogle Scholar
  18. 18.
    Britton, N. F., and Murray, J. D. (1977). The effect of carbon monoxide on haem- facilitated oxygen diffusion. Biophys. Chem. 7: 159–167.PubMedCrossRefGoogle Scholar
  19. 19.
    Buerk, D. G., and Longmuir, I. S. (1977). Evidence for nonclassical respiratory activity from oxygen gradient measurements in tissue slices. Microvasc. Res. 13: 345–353PubMedCrossRefGoogle Scholar
  20. 20.
    Caillé, J. P., and Hinke, J. A. M. (1972). Evidence for Na sequestration in muscle from Na diffusion measurements. Can. J. Physiol. Pharmacol. 50: 228–237.CrossRefGoogle Scholar
  21. 21.
    Caillé, J. P., and Hinke, J. A. M. (1973). Evidence for K and CI binding inside muscle from diffusion studies. Can. J. Physiol. Pharmacol. 51: 390–400.PubMedCrossRefGoogle Scholar
  22. 22.
    Caillé, J. P., and Hinke, J. A. M. (1974). The volume available to diffusion in the muscle fiber. Can. J. Physiol. Pharmacol. 52: 814–828.PubMedCrossRefGoogle Scholar
  23. 23.
    Carles, A. C., Kawashiro, T., and Piiper, J. (1975). Solubility of various inert gases in rat skeletal muscle. Pfluegers Arch. 359: 209–218.CrossRefGoogle Scholar
  24. 24.
    Chalazonitis, N. (1968). Intracellular p02 control on excitability and synaptic activ- ability, in Aplysia and Helix identifiable giant neurons. Ann. N.Y. Acad. Sci. 147: 419–459.Google Scholar
  25. 25.
    Chalazonitis, N., and Arvanitaki, A. (1970). Neuromembrane electrogenesis during changes in p02, pC02, and pH. Adv. Biochem. Psychopharmacol. 2: 245–284.Google Scholar
  26. 26.
    Chance, B., Barlow, C., Nakase, Y., Takeda, H., Mayevsky, A., Fischetti, R., Graham, N., and Sorge, J. (1978). Heterogeneity of oxygen delivery in normoxic and hypoxic states: A fluorometer study. Am. J. Physiol. 235: H809–H820.Google Scholar
  27. 27.
    Coburn, R. F., and Mayers, L. B. (1971). Myoglobin oxygen tension determined from measurements of carboxymyoglobin in skeletal muscle. Am. J. Physiol. 220: 66–74.PubMedGoogle Scholar
  28. 28.
    Coburn, R. F., and Pendleton, M. (1979). Effects of norepinephrine on oxygenation of resting skeletal muscle. Am. J. Physiol. 236: H307–H313.Google Scholar
  29. 29.
    Coburn, R. F., Ploegmakers, F., Gondrie, P., and Abboud, R. (1973). Myocardial myoglobin oxygen tension. Am. J. Physiol. 224: 870–876.PubMedGoogle Scholar
  30. 30.
    Cole, R. P., Wittenberg, B. A., and Caldwell, P. R. B. (1978). Myoglobin function in the isolated fluorocarbon-perfused dog heart. Am. J. Physiol. 234: H567–H572.Google Scholar
  31. 31.
    Cole, R. P., Wittenberg, J. B., and Wittenberg, B. A. (1979). Mitochondrial function in the presence of myoglobin. Physiologist 22: 21.Google Scholar
  32. 32.
    Colton, C. K., Stroeve, P., and Zahka, J. G. (1973). Mechanism of oxygen transport augmentation by hemoglobin. J. Appl. Physiol. 35: 307–309.PubMedGoogle Scholar
  33. 33.
    Criswell, J. G., Havelka, U. D., Quebe- deaux, B., and Hardy, R. W. F. (1976). Adaptation of nitrogen fixation by intact soybean nodules to altered rhizosphere pO2. Plant Physiol. 58: 622–625.PubMedCrossRefGoogle Scholar
  34. 34.
    Douglas, C. G., and Haldane, J. S. (1922). The regulation of the general circulation rate in man. J. Physiol. (London) 56: 69–0100.Google Scholar
  35. 35.
    Fabel, H., and Lubbers, D. W. (1965). Measurements of reflection spectra of the beating rabbit heart in situ. Biochem. Z. 341: 351–356.Google Scholar
  36. 36.
    Figulla, H. R., Wodick, R, Hoffman, J., and Lubbers, D. W. (1979). The oxygen saturation of myoglobin and cytochrome a a 3 during high flow hypoxia and low flow hypoxia in the beating, hemoglobin-free perfused Langendorf guinea pig heart. Pfluegers Arch. 379: R3.Google Scholar
  37. 37.
    Garby, L., and Meldon, J. (1977). The Respiratory Functions of the Blood. New York: Plenum Press, pp. 179–183.Google Scholar
  38. 38.
    Gurtner, G. H., Burns, B., Peary, H. H, Mendoza, C. J., Traystman, R J., Summer, W., and Sciuto, A. M. (1978). Specific mechanisms for oxygen and carbon monoxide transport in the lung and placenta. In: Regulation of Ventilation and Gas Exchange. D. G. Davies and C. D. Barnes (editors) New York: Academic Press.Google Scholar
  39. 39.
    Haldane, J. S., and Priestley, J. G. (1935). Respiration. New Haven: Yale University Press.Google Scholar
  40. 40.
    Hemmingsen, E. A. (1965). Accelerated transfer of oxygen through solutions of heme pigments. Acta Physiol. Scand. 64, Suppl. 246: 1–53.Google Scholar
  41. 41.
    Hill, R. (1936). Oxygen dissociation curves of muscle hemoglobin. Proc. Roy. Soc. London, Ser. B 120: 472–483.Google Scholar
  42. 42.
    Holloszy, J. O. (1975). Adaptation of skeletal muscle to endurance exercise. Med. Sci. Sports 7: 155–164.PubMedGoogle Scholar
  43. 43.
    Hoofd, L., and Kreuzer, F. (1978). Calculation of the facilitation of oxygen or carbon monoxide by hemoglobin or myoglobin by means of a new method for solving the carrier diffusion problem. Adv. Exp. Med. Biol. 94: 163–168.Google Scholar
  44. 44.
    Imamura, T., Riggs, A., and Gibson, A. H. (1972). Equilibria and kinetics of ligand binding by leghemoglobin from soybean root nodules. J. Biol. Chem. 247: 521–526.PubMedGoogle Scholar
  45. 45.
    Jones, D. P., and Mason, H. S. (1978). Gradients of oxygen concentration in hepat- ocytes. J. Biol. Chem. 253: 4874–4880.PubMedGoogle Scholar
  46. 46.
    Jones, R. D., Summerville, D. A., and Basolo, F. (1979). Synthetic oxygen carriers related to biological systems. Chem. Rev. 79: 139–179.CrossRefGoogle Scholar
  47. 47.
    Kawashiro, T., Carles, A. C., Perry, S. F., and Piiper, J. (1975). Diffusivity of various inert gases in rat skeletal muscle. Pfluegers Arch. 359: 219–230.CrossRefGoogle Scholar
  48. 48.
    Kawashiro, T., Nusse, W., and Scheid, P. (1975). Determination of diffusivity of oxygen and carbon dioxide in respiring tissue. Results in rat skeletal muscle. Pfluegers Arch. 359: 231–251.CrossRefGoogle Scholar
  49. 49.
    Kawashiro, T., and Scheid, P. (1976). Measurement of Krogh’s diffusion constant of C02 in respiring muscle at various C02 levels: Evidence for facilitated diffusion. Pfluegers Arch. 362: 127–133.CrossRefGoogle Scholar
  50. 50.
    Keller, K. H., Canales, E. R., and Yum, S. I. (1971). Tracer and mutual diffusion coefficients of proteins. J. Phys. Chem. 75: 379–387.CrossRefGoogle Scholar
  51. 51.
    Klapper, M. H., and Hackett, D. P. (1963). The oxidative activity of horseradish peroxidase. I. Oxidation of hydro- and naphtho- hydroquinones. J. Biol. Chem. 238: 3736–3742.PubMedGoogle Scholar
  52. 52.
    Klapper, M. H., and Hackett, D. P. (1963). The oxidative activity of horseradish peroxidase. II. Participation of ferroperoxidase. J. Biol. Chem. 238: 3743–3749.PubMedGoogle Scholar
  53. 53.
    Klippenstein, G. L., Van Riper, D. A., and Oosterom, E. A. (1972). A comparative study of the oxygen transport proteins of Dendrostomum pyroides. Isolation and characterization of hemerythrins from muscle, the vascular system and the coelom. J. Biol. Chem. 247: 5959–5963.PubMedGoogle Scholar
  54. 54.
    Kreuzer, F. (1970). Facilitated diffusion of oxygen and its possible significance, a review. Respir. Physiol. 9: 1–30.PubMedCrossRefGoogle Scholar
  55. 55.
    Kreuzer, F., de Koning, J., van Haren, R., and Hoofd, L. J. C. (1977). Oxygen diffusion facilitated by myoglobin in the chicken gizzard smooth muscle. 9th Eur. Conf. Microcirc., Antwerp. Bibl. Anat. 15:380–385. Karger, Basel.Google Scholar
  56. 56.
    Kreuzer, F., and Hoofd, L. J. C. (1970). Facilitated diffusion of oxygen in the presence of hemoglobin. Respir. Physiol. 8: 280–302.PubMedCrossRefGoogle Scholar
  57. 57.
    Kreuzer, F., and Hoofd, L. J. C. (1972). Factors influencing facilitated diffusion of oxygen in the presence of hemoglobin and myoglobin. Respir. Physiol. 15: 104–124.PubMedCrossRefGoogle Scholar
  58. 58.
    Kreuzer, F., and Hoofd, L. J. C. (1976). Facilitated diffusion of carbon monoxide and oxygen in the presence of hemoglobin or myoglobin. Adv. Exp. Med. Biol. 75: 207–215.Google Scholar
  59. 59.
    Krueger, J. W., Forletti, D., and Wittenberg, B. A. (1980). Uniform sarcomere shortening in isolated cardiac muscle cells. J. Gen. Physiol. 76: 587–607.PubMedCrossRefGoogle Scholar
  60. 60.
    Kushmerick, M J., and Podolsky, R. J. (1969). Ionic mobility in muscle cells. Science 166: 1297–1298.PubMedCrossRefGoogle Scholar
  61. 61.
    Laane, C., Haaker, H., and Veeger, C. (1978). Involvement of the cytoplasmic membrane in nitrogen fixation by Rhizo- bium leguminosarum bacteroids. Eur. J. Biochem. 87: 147–153.PubMedCrossRefGoogle Scholar
  62. 62.
    Lawrie, R. A. (1953). The activity of the cytochrome system in muscle and its relation to myoglobin. Biochem. J. 55: 298–305.PubMedGoogle Scholar
  63. 63.
    Longmuir, I. S. (1976). The measurement of the fraction of oxygen carried by facilitated diffusion. Adv. Exp. Med. Biol. 75:Google Scholar
  64. 64.
    Longmuir, I. S., Martin, D. C., Gold, H. J., and Sun, S. (1971). Nonclassical respiratory activity of tissue slices. Microvasc. Res. 3: 125–141.PubMedCrossRefGoogle Scholar
  65. 65.
    Loud, A. V., Anversa, P., Giacomelli, F., and Wiener, J. (1978). Absolute morpho- metric study of myocardial hypertrophy in experimental hypertension. I. Determination of myocyte size. Lab. Invest. 38: 586–596.PubMedGoogle Scholar
  66. 66.
    Mahler, M. (1978). Diffusion and consumption of oxygen in the resting frog sartorius muscle. J. Gen. Physiol. 71: 533–557.PubMedCrossRefGoogle Scholar
  67. 67.
    Millikan, G. A. (1937). Experiments on muscle haemoglobin in vivo; the instantaneous measurement of muscle metabolism. Proc. Roy. Soc. London, Ser. B 123: 218–241.Google Scholar
  68. 68.
    Millikan, G. A. (1939). Muscle hemoglobin. Physiol. Rev. 19: 503–523.Google Scholar
  69. 69.
    Mitchell, P. J., and Murray, J. D. (1973). Facilitated diffusion: The problem of boundary conditions. Biophysik 9: 177–190.PubMedCrossRefGoogle Scholar
  70. 70.
    Murray, J. D. (1971). On the molecular mechanism of facilitated oxygen diffusion by haemoglobin and myoglobin. Proc. Roy. Soc. London, Ser. B 178: 95–110.Google Scholar
  71. 71.
    Murray, J. D. (1974). On the role of myoglobin in muscle respiration. J. Theor. Biol. 47: 115–126.PubMedCrossRefGoogle Scholar
  72. 72.
    Murray, J. D., and Wyman, J. (1971). Facilitated diffusion, the case of carbon monoxide. J. Biol. Chem. 246: 5903–5906.PubMedGoogle Scholar
  73. 73.
    Oshino, N., Jamieson, D., and Chance, B. (1975). The properties of hydrogen peroxide production under hyperoxic and hypoxic conditions of perfused rat liver. Biochem. J. 146: 53–65.PubMedGoogle Scholar
  74. 74.
    Oshino, N., Jamieson, D., Sugano, T., and Chance, B. (1975). Optical measurements of the catalase-hydrogen peroxide intermediate (Compound I) in the liver of anaesthetized rats and its implication to hydrogen peroxide production in situ. Biochem. J. 146: 67–77.PubMedGoogle Scholar
  75. 75.
    Perutz, M. F., Kendrew, J. C., and Watson, H. C. (1965). Structure and function of hemoglobin II. Some relations between polypeptide chain configuration and amino acid sequence. J. Mol. Biol. 13: 669–678.CrossRefGoogle Scholar
  76. 76.
    Rich, T. L., and Williamson, J. R. (1978). Optical evidence for steep oxygen gradients and sharp border zones in hypoxic cardiac tissue. Fed. Proc. 37: 780.Google Scholar
  77. 77.
    Riveros-Moreno, V., and Wittenberg, J. B. (1972). The self-diffusion coefficients of myoglobin and hemoglobin in concentrated solutions. J. Biol. Chem. 247: 895–901.PubMedGoogle Scholar
  78. 78.
    Romero-Herrera, A. E., Lehmann, H., Joysey, K. A., and Friday, A. E. (1978). On the evolution of myoglobin. Phil. Trans. Roy. Soc. London, Ser. B 283: 61–163.CrossRefGoogle Scholar
  79. 79.
    Rubinow, S. I., andDembo, M. (1977). The facilitated diffusion of oxygen by hemoglobin and myoglobin. Biophys. J. 18: 29–42.PubMedCrossRefGoogle Scholar
  80. 80.
    Scholander, P. F. (1960). Oxygen transport through hemoglobin solutions. Science 131: 585–590.PubMedCrossRefGoogle Scholar
  81. 81.
    Schuder, S., Wittenberg, J. B., Haseltine, B., and Wittenberg, B. A. (1979). Spectro- photometric determination of myoglobin in cardiac and skeletal muscle: Separation from hemoglobin by subunit exchange chromatography. Anal. Biochem. 92: 473–481.PubMedCrossRefGoogle Scholar
  82. 82.
    Schultz, J. S., Goddard, J. D., and Suchdeo, S. R. (1974). Facilitated transport via carrier-mediated diffusion in membranes. Part I. Mechanistic aspects, experimental systems and characteristic regimes. AIChE J 20: 417–445.CrossRefGoogle Scholar
  83. 83.
    Schwarzmann, V., and Grunewald, W. A. (1978). Myoglobin oxygen saturation profiles in muscle sections of chicken gizzard and the facilitated 02-transport by myoglobin. Adv. Exp. Med. Biol. 94: 301–310.Google Scholar
  84. 84.
    Sies, H. (1977). Oxygen gradients during hypoxic steady states in liver. Urate oxidase and cytochrome oxidase as intracellular oxygen indicators. Hoppe-Seyler’s Z. Physiol. Chem. 358: 1021–1032.CrossRefGoogle Scholar
  85. 85.
    Smith, J. D. (1949). Haemoglobin and the oxygen uptake of leguminous root nodules. Biochem. J. 44: 591–598.Google Scholar
  86. 86.
    Smith, K. A., Meldon, J. H., and Colton, C. K. (1973). An analysis of carrier mediated transport. AIChE J. 19: 102–111.CrossRefGoogle Scholar
  87. 87.
    Steenbergen, C., Deleeuw, G., Barlow, C., Chance, B., and Williamson, J. R. (1977). Heterogeneity of the hypoxic state in perfused rat heart. Circ. Res. 41: 606–615.PubMedGoogle Scholar
  88. 88.
    Steenbergen, C., Williamson, J. R., Deleeuw, G. J. (1978). Nature of flow and oxygen border zones in hypoxic and ischemic myocardium, pp. 1542–1550 in: Frontiers of Biological Energetics, Vol. 2, Electrons to tissues. P. L. Dutton, J. S. Leigh and A. Scarpa (editors). New York: Academic Press.Google Scholar
  89. 89.
    Stewart, J. M., and Page, E. (1978). Improved stereological techniques for studying myocardial cell growth: Application to external sarcolemma, T-system, and intercalated discs of rabbit and rat hearts. J. Ultra- struct. Res. 65: 119–134.CrossRefGoogle Scholar
  90. 90.
    Stroeve, P. (1977). The facilitated transport of oxygen into muscle tissue. In: 9th Eur. Conf. Microcirc., Antwerp 1976. Bibl. Anat. 15: 429–432.Google Scholar
  91. 91.
    Stroeve, P., and Eagle, K. (1979). An analysis of diffusion in a medium containing dispersed reactive cylinders. Chem. Eng. Commun. 3: 189–198.Google Scholar
  92. 92.
    Suchdeo, S. R., Goddard, J. D., and Schultz, J. S. (1973). An analysis of the competitive diffusion of O2 and CO through hemoglobin solutions. Adv. Exp. Med. Biol. 37B: 951–961.Google Scholar
  93. 93.
    Swedin, B., and Theorell, H. (1940). Diox- oimaleic acid oxidase action of peroxidases. Nature 145: 71–72.CrossRefGoogle Scholar
  94. 94.
    Tamura, M., Oshino, N., Chance, B., and Silver, I. A. (1978). Optical measurements of intracellular oxygen concentration of rat heart/« vitro. Arch. Biochem. Biophys. 191: 8–22.CrossRefGoogle Scholar
  95. 95.
    Taylor, B. A., and Murray, J. D. (1977). Effect of the rate of oxygen consumption on muscle respiration. J. Math. Biol. 4:1–20. in nitrogen fixation by bacteroids isolated from soybean root nodules. J. Biol. Chem. 249: 4057–4066.Google Scholar
  96. 96.
    Tipton, K. F. (1972). Some properties of monoamine oxidase. Adv. Biochem. Psy- chopharmacol. 5: 11–24.Google Scholar
  97. 97.
    Tjepkema, J. D., and Yocum, C. S. (1973). Respiration and oxygen transport in soybean nodules. Planta 115: 59–72.CrossRefGoogle Scholar
  98. 98.
    Vainshtein, B. K., Arutyunian, E. G., Kuranova, I. P., Borisov, V. V., Sosfenov, N. I., Pavlovskii, A. G., Grebenko, A. I., Konareva, N. V., and Nekrasov, Y. V. (1977). Three-dimensional structure of lupine leghemoglobin at 2.8 Angstrom resolution. Dokl. Akad. Nauk SSSR 233: 238–241.Google Scholar
  99. 99.
    Van Ouwerkerk, H. J. (1977). Facilitated diffusion in a tissue cylinder with an anoxic region. Pfluegers Arch. 372: 221–230.CrossRefGoogle Scholar
  100. 100.
    Veldkamp, W. B., and Votano, J. R. (1976). Effects of intermolecular interaction on protein diffusion in solution. J. Phys. Chem. 80: 2794–2801.CrossRefGoogle Scholar
  101. 101.
    Wang, J. H. (1954). Theory of self-diffusion of water in protein solutions. A new method for studying the hydration and shape of protein molecules. J. Am. Chem. Soc. 76: 4755–4763.CrossRefGoogle Scholar
  102. 102.
    Weibel, E. R., Staubli, W., Gnagi, H. R., and Hess, F. A. (1969). Correlated mor- phometric and biochemical studies on the liver cell. I. Morphometric model, stereo- logical methods and normal morphometric data for rat liver. J. Cell Biol. 42: 68–91.PubMedCrossRefGoogle Scholar
  103. 103.
    Weibel, E. R., Staubli, W., Gnagi, H. R., and Hess, F. A. (1969). Correlated mor- phometric and biochemical studies on the liver cell. I. Morphometric model, stereo- logical methods and normal morphometric data for rat liver. J. Cell Biol. 42:68–91.Google Scholar
  104. 104.
    Weisz, P. B. (1973). Diffusion and chemical transformation. An interdisciplinary transformation. Science 179: 433–440.PubMedCrossRefGoogle Scholar
  105. 105.
    Wittenberg, B. A. (1979). Myoglobin in isolated adult heart cells, pp. 35–51. la- Oxygen: Biochemical and Clinical Aspects. W. S. Caughey (editor). Academic Press, New York.Google Scholar
  106. 106.
    Wittenberg, B. A., and Robinson, T. F. (1981). Oxygen requirements, morphology, cell coat and membrane permeability of calcium-tolerant myocytes from hearts of adult rats. Cell and Tissue Res. In press.Google Scholar
  107. 107.
    Wittenberg, B. A., Wittenberg, J. B., and Caldwell, P. R. B. (1975). Role of myoglobin in the oxygen supply to red skeletal muscle. J. Biol. Chem. 250: 9038–9043.PubMedGoogle Scholar
  108. 108.
    Wittenberg, B. A., Wittenberg, J. B., and Krueger, J. W. (1978). Myoglobin in oxygen economy of isolated cardiac cells. Fed. Proc. 37: 1608.Google Scholar
  109. 109.
    Wittenberg, B. A., Wittenberg, J. B., Stolz- berg, S., and Valenstein, E. (1965). A novel reaction of hemoglobin in invertebrate tissues. II. Observations on molluscan muscle. Biochim. Biophys. Acta 109: 530–535.Google Scholar
  110. 110.
    Wittenberg, J. B. (1959). Oxygen transport: A new function proposed for myoglobin. Biol. Bull. 117: 402.Google Scholar
  111. 111.
    Wittenberg, J. B. (1966). The molecular mechanism of hemoglobin-facilitated oxygen diffusion. J. Biol. Chem. 241: 104–114.Google Scholar
  112. 112.
    Wittenberg, J. B. (1970). Myoglobin facilitated oxygen diffusion: Role of myoglobin in oxygen entry into muscle. Physiol. Rev. 50: 559–636.Google Scholar
  113. 113.
    Wittenberg, J. B. (1972). An ubiquitous association between myoglobin and equimo- lar quantities of iron protein(s). Fed. Proc. 31: 923.Google Scholar
  114. 114.
    Wittenberg, J. B. (1976). Facilitation of oxygen diffusion by intracellular leghemoglobin and myoglobin, pp. 228–246. In: Oxygen and Physiological Function. F. F. Jöbsis (editor). Professional Information Library, Dallas, Texas.Google Scholar
  115. 115.
    Wittenberg, J. B. (1978). Leghemoglobin. Low temperature optical spectra of acid and alkaline forms of leghemoglobin(IV). Configuration of the heme. J. Biol. Chem. 253: 5690–5693.PubMedGoogle Scholar
  116. 116.
    Wittenberg, J. B. (1980). Utilization of leghemoglobin-bound oxygen by Rhizobium bacteroids. pp. 53–67. In: Nitrogen Fixation, Vol. II, W. H. Orme-Johnson and W. E. Newton (editors). Baltimore: University Park Press.Google Scholar
  117. 117.
    Wittenberg, J. B. (1979). Reactivity and function of leghemoglobin. pp. 53–68. In: Oxygen: Biochemical and Clinical Aspects. W.S. Caughey (editor). New York: Academic Press.Google Scholar
  118. 118.
    Wittenberg, J. B., Appleby, C. A., and Wittenberg, B. A. (1972). The kinetics of the reactions of leghemoglobin with oxygen and carbon monoxide. J. Biol. Chem. 247: 527–531.PubMedGoogle Scholar
  119. 119.
    Wittenberg, J. B., Bergersen, F. J., Appleby, C. A., and Turner, G. L. (1974). Facilitated oxygen diffusion. The role of leghemoglobin in nitrogen fixation by bacteroids isolated from soybean root nodules. J. Biol. Chem. 249: 4057 - 4066.PubMedGoogle Scholar
  120. 120.
    Wittenberg, J. B., Brown, P. K., and Wittenberg, B. A. (1965). A novel reaction of hemoglobin in invertebrate nerves. I. Observations on annelid and molluscan nerves. Biochim. Biophys. Acta 109: 518-529.Google Scholar
  121. 121.
    Wittenberg, J. B., Noble, R. W., Wittenberg, B. A., Antonini, E., Brunori, M., and Wyman, J. (1967). Studies on the equilibria and kinetics of the reactions of peroxidase with ligands. II. The reaction of ferroperox- idase with oxygen. J. Biol. Chem. 242: 626–634.PubMedGoogle Scholar
  122. 122.
    Wyman, J. (1966). Facilitated diffusion and the possible role of myoglobin as a transport mechanism. J. Biol. Chem. 241: 115–121.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1981

Authors and Affiliations

  • Jonathan B. Wittenberg
  • Beatrice A. Wittenberg

There are no affiliations available

Personalised recommendations