Significance of Oxygen on Earth

  • Daniel L. Gilbert
Part of the Topics in Environmental Physiology and Medicine book series (TEPHY)


The earth’s crust is composed of four shells, commonly termed spheres. These are the lithosphere, or the solid portion; the hydrosphere, or the liquid portion; the atmosphere, or the gaseous portion; and the biosphere, or the living portion. Oxygen is the most prevalent element in the earth’s crust, having an atom abundance of 53.8% (Gilbert, 1964). Oxygen plays a significant role in each of these components. We will briefly discuss the interrelationships of oxygen in these spheres at the present time. Then we will speculate on the past and attempt to forecast the future.


Oxygen Pressure Ozone Layer Tropical Rain Forest Oxygen Toxicity Methanogenic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M. W. W., and Hall, D. O. (1979). Properties of the solubilized membrane-bound hydrogenase from the photosynthetic bacterium Rhodospirillum rubrum. Arch. Biochem. Biophys. 195: 288–299.CrossRefGoogle Scholar
  2. Aristotle (1953). The Works of Aristotle Translated into English. W. D. Ross (Ed.). Vol. 2. Physica. R. P. Hardie and R. E. Gaye (Eds.) New York: Oxford University Press.Google Scholar
  3. Aristotle (1958). The Works of Aristotle Translated into English. J. A. Smith and W. D. Ross (Eds.) Vol. 5. De Generatione Animalium. A. Platt (Ed.) New York: Oxford Univ. Press.Google Scholar
  4. Balch, W. E., and Wolfe, R. S. (1976). New approach to the cultivation of methanogenic bacteria: 2-Mercaptoethanesulfonic acid (HS- CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. Environ. Microbiol. 32: 781–791.PubMedGoogle Scholar
  5. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R, and Wolfe, R S. (1979). Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43: 260–296.PubMedGoogle Scholar
  6. Barghoorn, E. S., and Tyler, S. A. (1965). Micro-organisms from the Gunflint Chert. Science 147: 563 - 577.PubMedCrossRefGoogle Scholar
  7. Berkner, L. V., and Marshall, L. C. (1967). The rise of oxygen in the earth’s atmosphere with notes on the Martian atmosphere. Adv. Geophys. 12: 309–331.CrossRefGoogle Scholar
  8. Bernal, J. D. (1949). The physical basis of life. Proc. Phys. Soc. A 62: 537–558.CrossRefGoogle Scholar
  9. Bishop, N. I., and Jones, L. W. (1978). Alternate fates of the photochemical reducing power generated in photosynthesis: Hydrogen production and nitrogen fixation. Curr. Top. Bioenerg. 8: 3–31.Google Scholar
  10. Bolin, B. (1977). Changes of land biota and their importance for the carbon cycle. Science 196: 613–615.PubMedCrossRefGoogle Scholar
  11. Bowien, B., Cook, A. M., and Schlegel, H. G. (1974). Evidence for the in vivo regulation of glucose 6-phosphate dehydrogenase activity of Hydrogenomonas eutropha H 16 from measurements of the intracellular concentrations of metabolic intermediates. Arch. Microbiol. 97: 273–281.Google Scholar
  12. Brill, W. J. (1975). Regulation and genetics of bacterial nitrogen fixation. Annu. Rev. Microbiol. 29: 109–129.PubMedCrossRefGoogle Scholar
  13. Broda, E. (1975). The Evolution of the Bioenergetic Processes. New York: Pergamon Press.Google Scholar
  14. Broecker, W. S., Takahashi, T., Simpson, H. J., and Peng, T.-H. (1979). Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206: 409–418.PubMedCrossRefGoogle Scholar
  15. Brooks, J., and Shaw, G. (1978). A critical assessment of the origin of life. In: Noda, H. (Ed.). Origin of Life. Proceedings of the Second ISSOL Meeting. The Fifth ICOL Meeting. Tokyo: Center for Academic Publications Japan/Japan Scientific Societies Press, pp. 597–606.Google Scholar
  16. Buhl, D. (1974). Galactic clouds of organic molecules. Origins Life 5: 29–40.CrossRefGoogle Scholar
  17. Calvin, M. (1969). Chemical Evolution. Molecular Evolution Towards the Origin of Living Systems on the Earth and Elsewhere. New York: Oxford University Press.Google Scholar
  18. Chameides, W. L., Walker, J. C. G., and Nagy, A. F. (1979). Possible chemical impact of planetary lightning in the atmospheres of Venus and Mars. Nature 280: 821–822.CrossRefGoogle Scholar
  19. Chance, B. (1981). The reaction of oxygen with cytochrome oxidase: The role of sequestered intermediates. This volume.Google Scholar
  20. Chung, K-T. (1976). Inhibitory effects of H2 on growth of Clostridium cellobioparum. Appl. Environ. Microbiol. 31: 342–348.Google Scholar
  21. Cloud, P. (1976). Beginnings of biospheric evolution and their biogeochemical consequences. Paleobiology 2: 351–387.Google Scholar
  22. Cloud, P. (1978). Cosmos, Earth, and Man. A Short History of the Universe. New Haven, Conn.: Yale University Press.Google Scholar
  23. Cohen, S. S. (1974). On the origins of cells: The development of a Copernican revolution. In: Neynman, J. (Ed.). The Heritage of Copernicus: Theories “Pleasing to the Mind.” Cambridge, Massachusetts: M.I.T. Press, pp. 207–221.Google Scholar
  24. Crick, F. H. C., and Orgel, L. E. (1973). Directed panspermia. Icarus 19: 341–346.CrossRefGoogle Scholar
  25. Crutzen, P. J. (1979). The role of NO and N02 in the chemistry of the troposphere and stratosphere. Annu. Rev. Earth Planet. Sci. 7: 443–472.CrossRefGoogle Scholar
  26. Crutzen, P. J., Heidt, L. E., Krasnec, J. P., Pollack, W. H., and Seiler, W. (1979). Biomass burning as a source of atmospheric gases CO, H2, N20, NO, CH3C1 and COS. Nature 282: 253–256.CrossRefGoogle Scholar
  27. Day, W. (1979). Genesis on Planet Earth. The Search for Life’s Beginning. East Lansing, Michigan: The House of Talos Publications.Google Scholar
  28. Decker, P. (1978). Inverse assimilation: A general principle of evolution of planetary surfaces. In: Noda, H. (Ed.). Origin of Life. Proceedings of the Second ISSOL Meeting. The Fifth ICOL Meeting. Tokyo: Center for Academic Publications Japan/Japan Scientific Societies Press, pp. 631–637.Google Scholar
  29. De Ley, J., and Kersters, K. (1975). Chapter III. Biochemical evolution in bacteria. In: Florkin, M., and Stotz, E. H. (Eds.). Comprehensive Biochemistry. Vol. 29. Part B. Comparative Biochemistry, Molecular Evolution. New York: Elsevier Scientific Pub. Co., pp. 1–77.Google Scholar
  30. Diderot, D. (1776). D’Alembert’s Dream. In: Diderot, D. Rameau’s Nephew and D’Alembert’s Dream (Tancock, L. W., translator). Baltimore: Penguin Books. 1966, pp. 133–233.Google Scholar
  31. Dimmick, R. L., and Chatigny, M. A. (1976). Possibility of growth of airborne microbes in outer planetary atmospheres. In: Ponnamperuma, C. (Ed.). Chemical Evolution of the Giant Planets. New York: Academic Press, pp. 95–106.Google Scholar
  32. Dole, M. (1965). The natural history of oxygen. J. Gen. Physiol. 49 (Part 2): 5–27.PubMedCrossRefGoogle Scholar
  33. Duedall, I. W., and Coote, A. R. (1972). Oxygen distribution in the Pacific Ocean. J. Geophys. Res. 77: 2201–2203.CrossRefGoogle Scholar
  34. Durham, J. W. (1978). The probable metazoan biota of the Precambrian as indicated by the subsequent record. Annu. Rev. Earth Planet. Sci. 6: 21–42.CrossRefGoogle Scholar
  35. Eliade, M. (1974). Gods, Goddesses, and Myths of Creation. A Thematic Source Book of the History of Religions. Part 1 of From Primitive to Zen. New York: Harper and Row.Google Scholar
  36. Erhalt, D. H., and Schmidt, U. (1978). Sources and sinks of atmospheric methane. Pure Appl. Geophys. 116: 452–464.CrossRefGoogle Scholar
  37. Florkin, M. (1974). Chapter I. Concepts of molecular biosemiotics and of molecular evolution. In: Florkin, M., and Stotz, E. H. (Eds.). Comprehensive Biochemistry. Vol. 29. Part A. Comparative Biochemistry, Molecular Evolution. New York: Elsevier Scientific Publishing Co., pp. 1–124.Google Scholar
  38. Forman, H. J., and Fisher, A. B. (1981). Antioxidant defenses. This volume.Google Scholar
  39. Fox, S. W., and Dose, K. (1977). Molecular Evolution and the Origin of Life. Revised Ed. New York: Marcel Dekker.Google Scholar
  40. Fridovich, I. (1976). Oxygen radicals, hydrogen peroxide, and oxygen toxicity. In: Pryor, W. (Ed.). Free Radicals in Biology. Vol. I. New York: Academic Press, pp. 239–277.Google Scholar
  41. Fridovich, I. (1981). Superoxide radical and superoxide dismutases. This volume.Google Scholar
  42. Garrels, R. M., Lerman, A., and Mackenzie, F. T. (1976). Controls of atmospheric 02 and C02: Past, present, and future. Am. Sci. 64: 306–315.Google Scholar
  43. Gerschman, R. (1964). Biological effects of oxygen. In: Dickens, F., and Neil, E. (Eds.). Oxygen in the Animal Organism. New York: Pergamon Press, Macmillan Co., pp. 475–494.Google Scholar
  44. Gibbs, M. (1970). The inhibition of photosynthesis by oxygen. Am. Sci. 58: 634–640.Google Scholar
  45. Gilbert, D. L. (1960). Speculation on the relationship between organic and atmospheric evolution. Perspect. Biol. Med. 4: 58–71.PubMedGoogle Scholar
  46. Gilbert, D. L. (1963). The role of pro-oxidants and antioxidants in oxygen toxicity. Radiat. Res. Suppl. 3: 44–53.CrossRefGoogle Scholar
  47. Gilbert, D. L. (1964). Cosmic and geophysical aspects of the respiratory gases. In: Fenn, W. O., and Rahn, H. (Eds.). Handbook of Physiology—Section 3:Respiration. Vol. I. Washington, D.C.: American Physiological Society, pp. 153–176.Google Scholar
  48. Gilbert, D. L. (1966). Antioxidant mechanisms against oxygen toxicity and their importance during the evolution of the biosphere. In: Brown, I. W., Jr., and Cox, B. G. (Eds.). Proceedings of the Third International Conference on Hyperbaric Medicine, Publication 1404, National Research Council. Washington, D.C.: National Academy of Science, pp. 3–14.Google Scholar
  49. Gilbert, D. L. (1968). The interdependence between the biosphere and the atmosphere. Respir. Physiol. 5: 68–77.PubMedCrossRefGoogle Scholar
  50. Gilbert, D. L. (1980). Discussion: What controls atmospheric oxygen? BioSystems 12: 123–124.PubMedCrossRefGoogle Scholar
  51. Gilbert, D. L. (1981a). Perspective on the history of oxygen and life. This volume.Google Scholar
  52. Gilbert, D. L. (1981b). Oxygen: An overall biological view. This volume.Google Scholar
  53. Goldschmidt, V. M. (1954). Geochemistry. Muir, A. (Ed.) New York: Oxford University Press.Google Scholar
  54. Goldstein, B. D. (1979). The pulmonary and extrapulmonary effects of ozone. In: Fitzsimons, D. W. (Ed.). Oxygen Free Radicals and Tissue Damage. Ciba Foundation Symposium 65 (New Series). New York: Elsevier/North- Holland, pp. 295–319.Google Scholar
  55. Gottlieb, S. F. (1981). Oxygen toxicity in unicellular organisms. This volume.Google Scholar
  56. Graham, J. B., Rosenblatt, R. H., and Gans, C. (1978). Vertebrate air breathing arose in fresh waters and not in the oceans. Evolution 32: 459–463.CrossRefGoogle Scholar
  57. Green, E. J., and Carritt, D. E. (1967). New tables for oxygen saturation of seawater. J. Mar. Res. 25: 140–147.Google Scholar
  58. Haldane, J. B. S. (1954). The origins of life. New Biol. 16:12–27, Penguin Books. In: Cloud, P. (Ed.). Adventures in Earth History. San Francisco: W.H. Freeman and Co., 1970, pp. 377–384.Google Scholar
  59. Hall, T. S. (1975). History of General Physiology. 600 B.C. to A.D. 1900. Vol. One. From Pre- Socratic Times to the Enlightenment. Chicago: University of Chicago Press.Google Scholar
  60. Halliwell, B. (1978). The chloroplast at work. A review of modern developments in our understanding of chloroplast metabolism. Prog. Biophys. Mol. Biol. 33: 1–54.PubMedCrossRefGoogle Scholar
  61. Hamilton, R. W., Jr., and Sheffield, P. J. (1977). Hyperbaric chamber safety. In: Davis, J. C., and Hunt, T. K. (Eds.). Hyperbaric Oxygen Therapy. Bethesda, Maryland: Undersea Medical Society, pp. 47–59.Google Scholar
  62. Hart, M. H. (1979). Habitable zones about main sequence stars. Icarus 37: 351–357.CrossRefGoogle Scholar
  63. Harvey, W. (1628). An anatomical disquisition on the motion of the heart-blood in animals. In: Knickerbocker, W. S. (Ed.). Classics of Modern Science (Copernicus to Pasteur). Boston: Beacon Press, 1962, pp. 47–48.Google Scholar
  64. Herbig, G. H. (1981). The origin and astronomical history of terrestrial oxygen. This volume.Google Scholar
  65. Hoffmann, G. W. (1975). The stochastic theory of the origin of the genetic code. Annu. Rev. Phys. Chem. 26: 123–144.CrossRefGoogle Scholar
  66. Holland, H. D. (1978). The Chemistry of the Atmosphere and Oceans. New York: John Wiley.Google Scholar
  67. Hook, R. (1665). Extracts from Micrographia: or Some Physiological descriptions of Minute bodies made by magnifying Glasses with Observations and Inquires thereupon. Alembic Club Reprints. No. 5. Edinburgh: Oliver and Boyd, Ltd., 1944.Google Scholar
  68. Hoyle, F., and Wickramasinghe, C. (1978). Life- cloud: The Origin of Life in the Universe. New York: Harper and Row.Google Scholar
  69. Huang, C., Wheeldon, L., and Thompson, T. E. (1964). The properties of lipid bilayer membranes separating two aqueous phases: Formation of a membrane of simple composition. J. Mol. Biol. 8: 148–160.PubMedCrossRefGoogle Scholar
  70. Hunt, B. G. (1976). On the death of the atmosphere. J. Geophys. Res. 81: 3677–3687.CrossRefGoogle Scholar
  71. Huntress, W. T., Jr. (1977). Ion-molecule reactions in the evolution of simple organic molecules in interstellar clouds and planetary atmospheres. Chem. Soc. Rev. 6: 295–323.CrossRefGoogle Scholar
  72. Hwang, J. C., Chen, C. H., and Burris, R H. (1973). Inhibition of nitrogenase-catalyzed reductions. Biochim. Biophys. Acta 292: 256–270.PubMedCrossRefGoogle Scholar
  73. Kanematsu, S., and Asada, K. (1979). Ferric and manganic superoxide dismutases in Euglena gracilis. Arch. Biochem. Biophys. 195: 535–545.PubMedCrossRefGoogle Scholar
  74. Kasting, J. F., Liu, S. C., and Donahue, T. M. (1979). Oxygen levels in the prebiological atmosphere. J. Geophys. Res. 84: 3097–3107.CrossRefGoogle Scholar
  75. Kellogg, W. W. (1979). Influences of mankind on climate. Annu. Rev. Earth Planet. Sci. 7: 63–92.CrossRefGoogle Scholar
  76. Keosian, J. (1974). Life’s beginnings—Origin or evolution? Origins Life 5: 285–293.CrossRefGoogle Scholar
  77. Knoll, A. H., and Barghoorn, E. S. (1977). Arche- an microfossils showing cell division from the Swaziland System of South Africa. Science 198: 396–398.PubMedCrossRefGoogle Scholar
  78. Kovachich, G. B., and Haugaard, N. (1981). Biochemical aspects of oxygen toxicity in the metazoa. This volume.Google Scholar
  79. Krebs, H. A. (1972). The Pasteur effect and the relations between respiration and fermentation. Essays Biochem. 8: 1–34.PubMedGoogle Scholar
  80. Lasaga, A. C., Holland, H. D., and Dwyer, M. J. (1971). Primordial oil slick. Science 174: 53–55.PubMedCrossRefGoogle Scholar
  81. Latimer, W. M. (1952). The Oxidation States of the Elements and their Elements in Aqueous Solutions. 2nd Ed. New York: Prentice-Hall.Google Scholar
  82. Lavoisier (1862). Vues générates sur la formation et la constitution de 1’atmosphère de la terre. Rec. Mém. Chim. de Lavoisier. Vol. 2, p. 398. In: Oeuvres de Lavoisier. Vol. II. Mémoires de Chimie et de Physique. Paris: Imp. Impériale, pp. 804–811.Google Scholar
  83. Lenfant, C., and Johansen, K. (1972). Gas exchange in gills, skin, and lung breathing. Resp. Physiol. 14: 211–218.CrossRefGoogle Scholar
  84. Likens, G. E., Bormann, F. H., Pierce, R. S., Eaton, J. S., and Johnson, N. M. (1977). Biogeochemistry of a Forested Ecosystem. New York: Springer-Verlag.Google Scholar
  85. Logan, J., McElroy, M. B., Wofay, S. C., and Prather, M. J., (1979). Oxidation of CS2 and COS: Sources for atmospheric S02. Nature 281: 185–188.CrossRefGoogle Scholar
  86. Lovelock, J. E. (1972). Gaia as seen through the atmosphere. Atmos. Environ. 6: 579–580.CrossRefGoogle Scholar
  87. Lumsden, J., Henry, L., and Hall, D. O. (1977). Superoxide dismutase in photosynthetic organisms. In: Michelson, A. M., McCord, J. M., and Fridovich, I. (Eds.). Superoxide and Superoxide Dismutases. New York: Academic Press, pp. 437–450.Google Scholar
  88. Machta, L., and Hughes, E. (1970). Atmospheric oxygen in 1967 to 1970. Science 168: 1582–1584.PubMedCrossRefGoogle Scholar
  89. Mah, R. A., Ward, D. M., Baresi, L., and Glass, T. L. (1977). Biogenesis of methane. Annu. Rev. Microbiol. 31: 309–341.PubMedCrossRefGoogle Scholar
  90. Margulis, L. (1970). Origin of Eukaryotic Cells. New Haven, Connecticut: Yale University Press.Google Scholar
  91. Margulis, L., and Lovelock, J. E. (1974). Biological modulation of the earth’s atmosphere. Icarus 21: 471–489.CrossRefGoogle Scholar
  92. Margulis, L., and Lovelock, J. E. (1978). The biota as ancient and modern modulator of the earth’s atmosphere. Pure Appl. Geophys. 116: 239–243.CrossRefGoogle Scholar
  93. Margulis, L., Walker, J. C. G., and Rambler, M. (1976). Reassessment of roles of oxygen and ultraviolet light in Precambrian evolution. Nature 264: 620–624.CrossRefGoogle Scholar
  94. Mason, B. (1966). Principles of Geochemistry. 3rd Ed. New York: John Wiley and Sons.Google Scholar
  95. Mason, S. F. (1953). Main Currents of Scientific Thought. A History of the Sciences. New York: Henry Schuman.CrossRefGoogle Scholar
  96. Mason, T. R., and Von Brunn, V. (1977). 3-Gyr-old stromatolites from South Africa. Nature 266: 47–49.Google Scholar
  97. Mauzerall, D. C., and Piccioni, R. G. (1981). Photosynthetic oxygen production. This volume.Google Scholar
  98. McAlester, A. L. (1970). Animal extinctions, oxygen consumption, and atmospheric history. J. Paleontol. 44: 405–409.Google Scholar
  99. McLean, D. M. (1978). A terminal Mesozoic “greenhouse”: Lessons from the past. Science 201: 401–406.PubMedCrossRefGoogle Scholar
  100. McWhirter, N. (1979). Guinness Book of World Records. 17th Ed. New York: Bantam Books.Google Scholar
  101. Menger, F. M. (1972). Reactivity of organic molecules at phase boundaries. Chem. Soc. Rev. 1: 229–240.CrossRefGoogle Scholar
  102. Mercer, J. H. (1978). West Antarctic ice sheet and C02 greenhouse effect: a threat of disaster. Nature 271: 321–325.CrossRefGoogle Scholar
  103. Miller, S., and Diehn, B. (1978). Cytochrome c oxidase as the receptor molecule for chemo-accumulation (chemotaxis) of Euglena toward oxygen. Science 200: 548–549.PubMedCrossRefGoogle Scholar
  104. Miller, S. L. (1953). A production of amino acids under possible primitive earth conditions. Science 117: 528–529.PubMedCrossRefGoogle Scholar
  105. Miller, S. L. (1974). The first laboratory synthesis of organic compounds under primitive earth conditions. In: Neynman, J. (Ed.). The Heritage of Copernicus: Theories “Pleasing to the Mind.” Cambridge, Massachusetts: M.I.T. Press, pp. 228–242.Google Scholar
  106. Miller, S. L., and Orgel, L. E. (1974). The Origins of Life on the Earth. Englewood Cliffs, New Jersey: Prentice Hall.Google Scholar
  107. Miller, S. L., Urey, H. C., and Oró, J. (1976). Origin of organic compounds on the primitive earth and in meteorites. J. Mol. Evol. 9: 59–72.PubMedCrossRefGoogle Scholar
  108. Minzner, R. A. (1977). The 1976 standard atmosphere and its relationship to earlier standards. Rev. Geophys. Space Phys. 15: 375–384.Google Scholar
  109. Molina, M. J., and Rowland, F. S. (1974). Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone. Nature 249: 810–812.CrossRefGoogle Scholar
  110. Morowitz, H., and Sagan, C. (1967). Life in the clouds of Venus? Nature 215: 1259–1260.CrossRefGoogle Scholar
  111. Napier, W. M., and Clube, S. V. M. (1979). A theory of terrestrial catastrophism. Nature 282: 455–459.CrossRefGoogle Scholar
  112. Needham, J. (1969). Science and Civilization in China. Vol. 2. History of Scientific Thought. New York: Cambridge University Press.Google Scholar
  113. Neuman, M. W., Neuman, W. F., and Lane, K. (1970). On the possible role of crystals in the origins of life. (III) The phosphorylation of adenosine to AMP by apatite. Curr. Mod. Biol. 3: 253–259.PubMedGoogle Scholar
  114. Oparin, A. I. (1936). The Origin of Life (Translated by S. Morgulis ). New York: Dover, 1953.Google Scholar
  115. Oparin, A. I. (1978). The nature and origin of life. In: Ponnamperuma, C. (Ed.). Comparative Planetology. New York: Academic Press, pp. 1–6.Google Scholar
  116. Oró, J. (1961). Comets and the formation of biochemical compounds on the primitive earth. Nature 190: 389–390.CrossRefGoogle Scholar
  117. Oró, J. (1976). Prebiological chemistry and the origin of life. A personal account. In: Kornberg, A. (Ed.). Reflections on Biochemistry. Oxford: Pergamon Press, pp. 423–443.Google Scholar
  118. Oró, J., Sherwood, E., Eichberg, J., and Epps, D. (1978). Formation of phospholipids under primitive earth conditions and the role of membranes in prebiological evolution. In: Deamer, D. W. (Ed.). Light Transducing Membrane:- Structure, Function and Evolution. New York: Academic Press, pp. 1–21.Google Scholar
  119. Otroshchenko, V. A., and Vasilyeva, N. V. (1977). The role of mineral surfaces in the origin of life. Origins Life 8: 25–31.CrossRefGoogle Scholar
  120. Oyama, V. I., and Berdahl, B. J. (1977). The Viking gas exchange experiment results from Chryse and Utopia surface samples. J. Geophys. Res. 82: 4669–4676.CrossRefGoogle Scholar
  121. Paecht-Horowitz, M. (1978). The influence of various cations on the catalytic properties of clays. J. Mol. Evol. 11: 101–107.PubMedCrossRefGoogle Scholar
  122. Pagel, B. E. J. (1979). Solar abundances. A new table (October 1976). Phys. Chem. Earth 11: 79–80.CrossRefGoogle Scholar
  123. Partington, J. R. (1961). A History of Chemistry. Vol 2. New York: St. Martin’s Press.Google Scholar
  124. Partington, J. R. (1970). A History of Chemistry. Vol. 1. Part 1: Theoretical Background. New York: St. Martin’s Press.Google Scholar
  125. Penzias, A. A. (1979). The origin of the elements. Science 205: 549–554.PubMedCrossRefGoogle Scholar
  126. Piiper, J., and Scheid, P. (1981). Oxygen exchange in the metazoa. This volume.Google Scholar
  127. Pollack, J. B. (1979). Climatic change on the terrestrial planets. Icarus 37: 479–553.CrossRefGoogle Scholar
  128. Pollard, W. G. (1979). The prevalence of earthlike planets. Am. Sci. 67: 653–659.CrossRefGoogle Scholar
  129. Ponnamperuma, C., Shimoyama, A., Yamada, M., Hobo, T., and Pal, R. (1977). Possible surface reaction on Mars: Implications for Viking biology results. Science 197: 455–457.PubMedCrossRefGoogle Scholar
  130. Pow, T., and Krasna, A. I. (1979). Photoproduction of hydrogen from water in hydrogenase-containing algae. Arch. Biochem. Biophys. 194: 413–479.PubMedCrossRefGoogle Scholar
  131. Prinn, R. G., Alyea, F. N., and Cunnold, D. M. (1978). Photochemistry and dynamics of the ozone layer. Annu. Rev. Earth Planet. Sci. 6: 43–74.CrossRefGoogle Scholar
  132. Probst, I., and Schlegel, H. G. (1973). Studies on a gram-positive hydrogen bacterium, Nocardia opaca Strain lb. II. Enzyme formation and regulation under the influence of hydrogen or fructose as growth substrates. Arch. Mikrobiol. 88: 319–330.Google Scholar
  133. Raff, R. A., and Mahler, H. R. (1975). The symbiont that never was: An inquiry into the evolutionary origin of the mitochondrion. Symp. Soc. Exp. Biol. 29: 41–92.PubMedGoogle Scholar
  134. Reddy, C. A., Bryant, M. P., and Wolin, M. J. (1972a). Characteristics of S organism isolated from Methanobacillus omelianskii. J. Bac- teriol. 109: 539–545.Google Scholar
  135. Reddy, C. A., Bryant, M. P., and Wolin, M. J. (1972b). Ferredoxin- and nicotinamide adenine dinucleotide-dependent H2 production from ethanol and formate in extracts of S organism isolated from “Methanobacillus omelianskii.” J. Bacteriol. 110: 126–132.PubMedGoogle Scholar
  136. Rolfs, C., and Trautvetter, H. P. (1978). Experimental nuclear astrophysics. Annu. Rev. Nucl. Part. Sci. 28: 115–159.CrossRefGoogle Scholar
  137. Rowland, F. S., and Molina, M. J. (1975). Chloro-fluoromethanes in the environment. Rev. Geo- phys. Space Phys. 13: 1–35.CrossRefGoogle Scholar
  138. Ruden, H., Thofern, E., Fischer, P., and Mihm, U. (1978). Airborne microorganisms: Their occurrence, distribution and dependence on environmental factors—Especially on organic compounds of air-pollution. Pure Appl. Geophys. 116: 335–350.CrossRefGoogle Scholar
  139. Russell, D. A. (1979). The enigma of the extinction of the dinosaurs. Annu. Rev. Planet Sci. 7: 163–182.CrossRefGoogle Scholar
  140. Sagan, C. (1961). On the origin and planetary distribution of life. Radiat. Res. 15: 174–192.PubMedCrossRefGoogle Scholar
  141. Sagan, C. (1973). Ultraviolet selection pressure on the earliest organisms. J. Theor. Biol. 39: 195–200.Google Scholar
  142. Sagan, C. (1980). Cosmos. New York: Random House.Google Scholar
  143. Schatz, A. (1957). Some biochemical and physiological considerations regarding the extinction of the dinosaurs. Proc. Penn. Acad. Sci. 31: 26–36.Google Scholar
  144. Schidlowski, M. (1979). Antiquity and evolutionary status of bacterial sulfate reduction: Sulfur isotope evidence. Origins Life 9: 299–311.Google Scholar
  145. Schidlowski, ML, Appel, P. W. U., Eichmann, R., and Junge, C. E. (1979). Carbon isotope geo¬chemistry of the 3.7 X 109-yr-old Isua sediments, West Greenland: implications for the Archaean carbon and oxygen cycles. Geochim. Cosmochim. Acta 43: 189–199.Google Scholar
  146. Schopf, J. W. (1975). Precambrian paleobiology: problems and perspectives. Annu. Rev. Earth Planet. Sci. 3: 213–249.CrossRefGoogle Scholar
  147. Schopf, J. W. (1978). The evolution of the earliest cells. Sci. Am. 239: 110-138.Google Scholar
  148. Schopf, T. J. M., Farmanfarmaian, A., and Gooch, J. L. (1971). Oxygen consumption rates and their paleontologic significance. J. Paleont. 45: 247–252.Google Scholar
  149. Schueler, F. W. (1960). Chemobiodynamics and Drug Design. New York: McGraw-Hill.Google Scholar
  150. Schwartz, R. M., and Dayhoff, M. O. (1978). Origins of prokaryotes, eukaryotes, mitochondia, and chloroplasts. Science 199: 395–403.PubMedCrossRefGoogle Scholar
  151. Shapley, H. (1958). Of Stars and Men. The Human Response to an Expanding Universe. New York: Washington Square Press.Google Scholar
  152. Shimoyani, A., Ponnamperuma, C., and Yanoi, K. (1979) Amino acids in the Yamato carbonaceous chondrite from Antarctica. Nature 282: 394–396.CrossRefGoogle Scholar
  153. Siegel, B. Z. (1977). Kakabekia, a review of its physiological and environmental features and their relation to its possible ancient affinities. In: Ponnamperuma, C. (Ed.). Chemical Evolution of the Early Precambrian. New York: Acad¬emic Press, pp. 143–154.Google Scholar
  154. Siegel, S. M. (1957). Catalytic and polymeriza¬tion-directing properties of mineral surfaces. Proc. Nat. Acad. Sci. U.S.A. 43: 811–816.PubMedCrossRefGoogle Scholar
  155. Sillén, L. G. (1965). Oxidation state of Earth’s ocean and atmosphere. I. A model calculation on earlier states. The myth of the “prebiotic soup.” Ark. Kemi 24: 431–456.Google Scholar
  156. Smith, D. C. (1979). From extracellular to intracellular: The establishment of a symbiosis. Proc. Roy. Soc. B 204: 115–130.Google Scholar
  157. Smith, J., and Shrift, A. (1979). Phylogenetic distribution of glutathione peroxidase. Comp. Biochem. Physiol. 63B. 39–44.Google Scholar
  158. Stanier, R. Y., and Cohen-Bazire, G. (1977). Phototrophic prokaryotes: The cyanobacteria. Annu. Rev. Microbiol. 31: 225–274.PubMedCrossRefGoogle Scholar
  159. Stoeckenius, W., Lozier, R. H., and Bogomolni, R. A. (1979). Bacteriorhodopsin and the purple membrane of halobacteria. Biochim. Biophys. Acta 505: 215–278.PubMedGoogle Scholar
  160. Swain, T. (1974). Chapter II. Biochemical evolution in plants. In: Florkin, M., and Stotz, E. H. (Eds.). Comprehensive Biochemistry Vol. 29. Part A Comparative Biochemistry, Molecular Evolution. New York: Elsevier Scientific Publishing Co., pp. 125–302.Google Scholar
  161. Tappan, H. (1974). Molecular oxygen and evolution. In: Hayaishi, O. (Ed.). Molecular Oxygen in Biology: Topics in Molecular Oxygen Research. New York: American Elsevier Publish¬ing Co., pp. 81–135.Google Scholar
  162. Taylor, F. J. R. (1979). Symbionticism revisited: A discussion of the evolutionary impact of intra-cellular symbioses. Proc. Roy. Soc. B 204: 267–286.CrossRefGoogle Scholar
  163. Thomas, L. (1974). The Lives of a Cell. Notes of a Biology Watcher. New York: Viking Press.Google Scholar
  164. Towe, K. M. (1978). Early Precambrian oxygen: A case against photosynthesis. Nature 274: 657–661.CrossRefGoogle Scholar
  165. Trimble, V. (1975). Origin and abundances of the chemical elements. Rev. Mod. Phys. 47: 877–976.Google Scholar
  166. Urey, H. C. (1952). On the early chemical history of the earth and the origin of life. Proc. Nat. Acad. Sci. U.S.A. 38: 351–363.PubMedCrossRefGoogle Scholar
  167. Urey, H. C. (1959). The atmospheres of the planets. Handb. Phys. 52: 363–418.Google Scholar
  168. Uzzell, T., and Spolsky, C. (1974). Mitochondria and plastids as endosymbionts: A revival of special creation? Am. Sci. 62: 334–343.PubMedGoogle Scholar
  169. Van Houten, F. B. (1973). Origin of red beds. A review—1961-1972. Annu. Rev. Earth Planet. Sci. 1: 39–61.Google Scholar
  170. Walker, J. C. G. (1977). Evolution of the Atmos-phere. New York: Macmillan.Google Scholar
  171. Walker, J. C. G. (1978). Oxygen and hydrogen in the primitive atmosphere. Pure Appl. Geophys. 116: 222–231.Google Scholar
  172. Walker, T. R. (1967). Formation of red beds in modern and ancient deserts. Geol. Soc. Am. Bull. 78: 353–368.CrossRefGoogle Scholar
  173. Watson, A., Lovelock, J. E., and Margulis, L. (1978). Methanogenesis, fires and the regulation of atmospheric oxygen. BioSystems 10: 293–298.PubMedCrossRefGoogle Scholar
  174. Weast, R. C., and Astle, M. J. (Eds.) (1979). CRC Handbook of Chemistry and Physics; A Ready- Reference Book of Chemical and Physical Data. 60th Ed. 1979-1980. Boca Raton, Florida: CRC Press, Inc.Google Scholar
  175. Whatley, J. M., John, P., and Whatley, F. R. (1979). From extracellular to intracellular: The establishment of mitochondria and chloroplasts. Proc. Roy. Soc. B 204: 165–187.CrossRefGoogle Scholar
  176. Whitfield, M. (1976). The evolution of the oceans and the universe. In: Bligh, J., Cloudsley- Thompson, J. L., and MacDonald, A. G. (Eds.). Environmental Physiology of Animals. New York: John Wiley, pp. 30–45.Google Scholar
  177. Whittaker, R. H., and Likens, G. E. (1975). The biosphere and man. In: Lieth, H., and Whit¬taker, R. H. (Eds.). Primary Productivity of the Biosphere. New York: Springer-Verlag, pp. 305 - 328.Google Scholar
  178. Wickramasinghe, R. H., and Villee, C. A. (1975). Early role during chemical evolution for cytochrome P450 in oxygen detoxification. Nature 256:509–511.CrossRefGoogle Scholar
  179. Wilson, T.H., and Maloney, P.C. (1976). Speculations on the evolution of ion transport mechanisms. Fed. Proc. 35: 2174–2179.PubMedGoogle Scholar
  180. Wittenberg, J. B., and Wittenberg, B. A. (1981). Facilitated oxygen diffusion by oxygen carriers. This volume.Google Scholar
  181. Woese, C. R., Magrum, L. J., and Fox, G. E. (1978). Archaebacteria. J. Mol. Evol. 11: 245–252.Google Scholar
  182. Woodwell, G. M., Whittaker, R. H., Reiners, W. A., Likens, G. E., Delwiche, C. C., and Botkin, D. B. (1978). The biota and the world carbon budget. Science 199: 141–146.PubMedCrossRefGoogle Scholar
  183. Woolley, L. (1965). History of Mankind. Cultural and Scientific Development. Vol. I, Part 2. The Beginnings of Civilization. New York: New American Library.Google Scholar
  184. Zeikus, J. G. (1977). The biology of methanogenic bacteria. Bacteriol. Rev. 41: 514–541.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1981

Authors and Affiliations

  • Daniel L. Gilbert

There are no affiliations available

Personalised recommendations