Skip to main content

Antioxidant Defenses

  • Conference paper
Oxygen and Living Processes

Part of the book series: Topics in Environmental Physiology and Medicine ((TEPHY))

Abstract

Gerschman first proposed that the initial event of oxygen poisoning may be the generation of toxic free radicals (28). This has led to a recent focus on free radicals generated from oxygen itself, including superoxide anion and hydroxl radical and derivatives of these radicals including H2O2 and singlet oxygen. It is now known that these partially reduced species of O2 are generated normally during cellular metabolism and, at least for some reactions, their rate of generation increases as a function of \({P_{{O_2}}}\) (26,27,46). This supports the possibility that exposure to elevated oxygen tensions results in increased generation of toxic free radicals which may then be responsible for tissue damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anbar, M., and Neta, P. (1967). A compilation of specific biomolecular rate constants for the reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals with inorganic and organic compounds in aqueous solution. Intern. J. Appl. Radiat. Isotopes 18: 495.

    Google Scholar 

  2. Arias, I. M., and Jakoby W. B. (1976). Glutathione: Metabolism and Function. New York: Raven Press.

    Google Scholar 

  3. Askelof, P., Axelsson, K, Erkisson, S., and Mannervik, B. (1974). Mechanism of action of enzymes catalyzing thiol-disulfide interchange; thioltransferases rather than trans- hydrogenases. FEBS Lett. 38: 263.

    Article  PubMed  CAS  Google Scholar 

  4. Bassett, D. J. P., and Fisher, A. B. (1976). Pentose cycle activity of the isolated perfused rat lung. Am. J. Phsyiol. 231: 1527.

    Google Scholar 

  5. Bassett, D. J. P., and Fisher, A. B. (1979). Glucose metabolism in rat lung during exposure to hyperbaric 02. J. Appl. Physiol.: Respirat. Environ. Excercise Physiol. 45: 943.

    Google Scholar 

  6. Beutler, E. (1972). Drug-induced anemia. Fed. Proc. 32: 141.

    Google Scholar 

  7. Block, E. R., and Fisher, A. B. (1977). Depression of serontonin clearance by rat lungs during oxygen exposure. J. Appl. Physiol.: Respirat. Environ. Exercise. Physiol. 42: 33.

    Google Scholar 

  8. Burk, R. F., Nishiki, K., Lawrence, R.A., and Chance, B. (1978). Peroxide removal by selenium-dependent and selenium-independent glutatione peroxidases in hemoglobin- free perfused rat liver. J. Biol. Chem. 253: 43.

    Google Scholar 

  9. Chance, B., Jamieson, D., and Coles, H. (1965). Energy-linked pyridine nucleotide reduction: Inhibitory effects of hyperbaric oxygen in vitro and in vivo. Nature 206: 257–263.

    Google Scholar 

  10. Chow, C. K., and Tappel, A. L. (1972). An enzymatic protective mechanism against lipid peroxidation damage to lungs of ozone- exposed rats. Lipids 7: 518.

    Article  PubMed  CAS  Google Scholar 

  11. Clark, J. M., and Lambertsen, C. J. (1971).

    Google Scholar 

  12. Pulmonary oxygen toxicity: A review. Pharmacol. Rev. 23: 37.

    Google Scholar 

  13. Clements, J. A. (1971). Comparative lipid chemistry of lungs. Arch. Intern. Med. 127: 387.

    Google Scholar 

  14. Cohen, G., and Hochstein, P. (1963). Glutathione peroxidase: The primary agent for the elimination of hydrogen peroxide in erythrocytes. Biochemistry 2: 1420.

    Google Scholar 

  15. Cohen, G., and Hochstein, P. (1964). Generation of hydrogen peroxide by hemolytic agents. Biochemistry 3: 895.

    Article  PubMed  CAS  Google Scholar 

  16. Crapo, J. D., Sjostrom, K., and Drew, R. T. (1978). Tolerance and cross-tolerance using N02 and O2.1. Toxicology and biochemistry. J. Appl. Physiol.: Respirat. Environ. Excercise Physiol 44: 364.

    Google Scholar 

  17. Crapo. J. D., and Tierney, D. F. (1974). Superoxide dismutase and pulmonary oxygen toxicity. Am. J. Physiol. 226: 1401.

    Google Scholar 

  18. Dam, K. (1957). Influence of antioxidants and redox substances on signs of vitamin E deficiency. Pharmacol. Rev. 9: 1.

    Google Scholar 

  19. DeDuve, C., and Baudhuin, P. (1966). Peroxisomes (microbodies and related particles). Physiol. Rev. 46: 323.

    Google Scholar 

  20. Ehrenkranz, R. A., Bonta, B. W., Albow, R C., and Warshaw, J. B. (1978). Amelioration of bronchopulmonary dysplasia after vitamin E administration. New Engl. J. Med. 299: 564.

    Google Scholar 

  21. Ellfolk, N., Ronnberg, M., and Soininen, R. (1973). Pseudomonas cytochrome c peroxidase. Acta Chem. Scand. 27: 2171.

    Google Scholar 

  22. Erecinska, M., Oshino, N., Loh, P., and Brocklehurst, E. (1973) In vitro studies on yeast cytochrome c peroxidase and its possible function in the electron transfer and energy coupling reactions. Biochim. Biophys. Acta 292: 1.

    Google Scholar 

  23. Foote, C. S. (1968). Mechanisms of photosensitized oxidation. Science 162: 963.

    Article  PubMed  CAS  Google Scholar 

  24. Foote, C. S., Denny, R. W., Weaver, L., Chong, Y., and Peters, J (1970). Quenching of singlet oxygen. Ann. N.Y. Acad. Sci. 171: 139.

    Google Scholar 

  25. Frank, L., Bucher, J. R., and Roberts, R. J. (1978). Oxygen toxicity in neonatal and adult animals of various species. J. Appl. Physiol.: Respirat. Environ. Excercise Physiol. 45: 699.

    Google Scholar 

  26. Fridovich, I. (1974). Superoxide dismutase In: Molecular mechanisms of oxygen activation. O. Hayaishi, ed. New York: Academic Press, pp. 453–477.

    Google Scholar 

  27. Fridovich, I., and Handler, P. (1962). Xanthine oxidase, V. Differential inhibition of the reduction of various electron acceptors. J. Biol. Chem. 237: 916–921.

    Google Scholar 

  28. Gerschman, R. (1964). Biological effects of oxygen. In: Oxygen in the Animal Organism. F. Dickens and E. Neil, eds. New York: Macmillan, pp. 475–494.

    Google Scholar 

  29. Goscin, S. H., and Fridovich, I. (1972). The role of superoxide radical in a nonenzymatic hydroxylation. Arch. Biochim. Biophys. 153: 778.

    Google Scholar 

  30. Grimble, R. F., and Hughes, R. E. (1967). A dehydroascorbic acid reductase factor in guinea-pig tissues. Experientia 23: 362.

    Article  PubMed  CAS  Google Scholar 

  31. Halliwell. B. (1978). Biochemical mechanisms accounting for the toxic action of oxygen on living organisms: the key role of superoxide dismutase. Cell Biol. Intern. Rep. 2.

    Google Scholar 

  32. Hassan, H. M., and Fridovich, I. (1977). Enzymatic defenses against the toxicity of oxygen and streptonignin in Escherichia coli. J. Bacteriol. 129: 1574.

    PubMed  CAS  Google Scholar 

  33. Jakoby, W. B., and Keen, J. H. (1977). A triple threat in detoxification: The glutathione- S-transferases. Trends Biochem. Sci. 2: 229.

    Google Scholar 

  34. Kearns, D. R. (1971). Physical and chemical properties of singlet oxygen. Chem. Rev. 71: 395.

    Google Scholar 

  35. Kehrer, J. P., and Autor, A. P. (1977). Changes in the fatty acid composition of rat lung lipids during development and following age-dependent lipid peroxidation. Lipids 12: 569.

    Article  Google Scholar 

  36. Kellogg, E. W., III, and Fridovich, I. (1975). Superoxide, hydrogen peroxide and singlet oxygen in lipid peroxidation by a xanthine oxidase system. J. Biol. Chem. 250: 8812.

    Google Scholar 

  37. Kimball, R. E., Reddy, K., Pierce, T. H., Schwartz, L. W., Mustafa, M. G., and Cross, C. E. (1976). Oxygen toxicity: Augmentation of antioxidant defense mechanisms in rat lung. Am. J. Physiol. 230: 1425.

    Google Scholar 

  38. Kosower, N. S. and Kosower, E. M. (1976). The glutathione-glutathione disulfide system. In: Free Radicals in Biology. Pry or, W. A., ed, Vol. II. New York: Academic Press.

    Google Scholar 

  39. Krinsky, N. I. (1974). Singlet excited oxygen as a mediator of the antibacterial action of leukocytes. Science 186: 363.

    Article  PubMed  CAS  Google Scholar 

  40. Mapson, L. W. (1958). Metabolism of ascorbic acid in plants: Function. Annu. Rev. Plant Physiol. 9: 119.

    Google Scholar 

  41. Matheson, M. S., Mulac, W. A., Weeks, J. L., and Rabani, J. (1966). The pulse radio- lysis of deaerated aqueous bromide solutions. J. Phys. Chem. 70: 2092.

    Google Scholar 

  42. Matthews-Roth, M. M., and Krinsky, N. I. (1970). Studies on the protective function of the carotenoid pigments of Sarcina lutea. Photochem. Photobiol. 11: 419.

    Google Scholar 

  43. Mohler, D. N., Majerus, D. W., Minnich, V., Hess, C. E., and Garrick, M. D. (1970). Glutathione synthetase deficiency as a cause of hereditary hemolytic disease. New Engl. J. Med. 283: 1253.

    Google Scholar 

  44. Morse, M. L., and Dahl, R. H. (1978). Cellular glutathione is a key to the oxygen effect in radiation damage. Nature 271: 660.

    Article  PubMed  CAS  Google Scholar 

  45. Neta, P., and Dorfman, L. M. (1968). Pulse radiolysis studies. XIII. Rate constants for the reaction of hydroxyl radicals with aromatic compounds in aqueous solutions Adv. Chem. Ser. 81: 222.

    Google Scholar 

  46. Nishiki, K., Jamieson, D., Oshino, N., and Chance B. (1976). Oxygen toxicity in the perfused rat liver and lung under hyperbaric conditions. Biochem. J. 160: 343.

    Google Scholar 

  47. Nishikimi, M. (1975). Oxidation of ascorbic acid with superoxide ion generated by the xanthine-oxidase system. Biochem. Biophys. Res. Commun. 63: 463–468.

    Google Scholar 

  48. Nishikimi, M., and Machlin, L. J. (1975). Oxidation of a-tocopherol model compound by superoxide anion. Arch. Biochem. Biophys. 170: 684.

    Google Scholar 

  49. Oh, S. H., Ganther, H. E., and Hockstra, W. G. (1974). Selenium as a component of glutathione peroxidase isolated from ovine erythrocytes. Biochemistry 13: 1825.

    Article  PubMed  CAS  Google Scholar 

  50. Omaye, S. T., Reddy, K. A., and Cross, C. E. (1978). Enhanced lung toxicity of paraquat in selenium-deficient rats. Toxicol. Appl. Pharmacol. 43: 237.

    Google Scholar 

  51. Pedersen, T. C., and Aust, S. D. (1973). The role of superoxide, hydrogen peroxide and singlet oxygen in lipid peroxidation promoted by xanthine oxidase. Biochem. Biophys. Res. Commun. 52: 1071.

    Google Scholar 

  52. Porter, W. L., Lavasseur, L. A., Jeffers, J. J., and Henick, A. S. (1971). UV spectrophotometry of autoxidized lipid monolayers while on silica gel. Lipids 6: 16.

    Article  PubMed  CAS  Google Scholar 

  53. Rosenbaum, R. M., Wittner, M., and Lenger, M. (1969). Mitochondrial and other ultra- structural changes in great alveolar cells of oxygen-adapted and poisoned rats. Lab. Invest. 20: 516.

    Google Scholar 

  54. Shreve, M. R., Morrissey, P. G., and O’Brien, P. J. (1979). Lipid and steroid hydro- peroxides as substrates for the non-selenium- dependent glutathione peroxidase. Biochem. J. 177: 761.

    Google Scholar 

  55. Singh, A., and Petkau, A. (1978). Singlet oxygen and related species in chemistry and biology. Photochem. Photobiol. 28: 429–433.

    Google Scholar 

  56. Smith, J., and Shrift, A. (1979). Phylogenetic distribution of glutathione peroxidase. Comp. Biochem. Physiol. 63B: 39.

    Google Scholar 

  57. Staudinger, H., Krisch, K., and Leonhauser, S. (1961). Role of ascorbic acid in microsomal electron transport and the possible relationship to hydroxylation reactions. Ann. N.Y. Acad. Sci. 92: 195.

    Google Scholar 

  58. Stern, K. G. (1936). On the mechanisms of enzyme action: A study of the decomposition of monoethyl hydrogen peroxide by catalase and of an intermediate enzyme-substrate compound. J. Biol. Chem. 114: 473.

    Google Scholar 

  59. Takahara, S. (1952). Progressive oral gangrene, probably due to lack of catalase in the blood (actalasaemia): Report on nine cases. Lancet 2: 1101.

    Google Scholar 

  60. Tappel, A. L. (1969). Vitamin E as the biological lipid antioxidant. Vitam. Horm. ( N.Y. ) 20: 493.

    Google Scholar 

  61. Taube, H. (1975). Mechanisms of oxidation with oxygen. J. Gen. Physiol. 49, Part 2: 29.

    Google Scholar 

  62. Thomas, M. J., Mehl, K. S., and Pryor, W. A. (1978). The role of the superoxide anion in the xanthine oxidase-induced autoxidation of linoleic acid. Biochem. Biophys. Res. Comm. 83: 927.

    Google Scholar 

  63. Tierney, D., Ayers, L., Herzog, S., and Yang, J. (1973). Pentose pathway and production of reduced nicotinamide adenine dinucleotide phosphate. Am. Rev. Respir. Dis. 108: 1348.

    Google Scholar 

  64. Tierney, D. F., Ayers, L., and Kasuyama, R S. (1977). Altered sensitivity to oxygen toxicity. Am. Rev. Respirât. Dis. 115, Part 2: 59.

    Google Scholar 

  65. Von Sonntag, C., and Dizdaroglu, M. (1971). The reaction of OH radicals with D- ribose in deoxygenated and oxygenated aqueous solution. Carbohyd. Res. 58: 21.

    Google Scholar 

  66. Walker, G. A., and Kilgour, G. L. (1965). Pyridine nucleotide oxidizing enzymes of Lactobaccilus casei. Arch. Biochem. Biophys. 111: 534.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Forman, H.J., Fisher, A.B. (1981). Antioxidant Defenses. In: Gilbert, D.L. (eds) Oxygen and Living Processes. Topics in Environmental Physiology and Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5890-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5890-2_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5892-6

  • Online ISBN: 978-1-4612-5890-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics