Skip to main content

Waves in Infinite Media

  • Chapter

Abstract

A wave is a disturbance, usually periodic, that travels with finite velocity through a medium. Sound waves, water waves, and electromagnetic waves are some examples. All wave motions have two important characteristics in common: First, energy is propagated to distant points and, second, the disturbance travels through the medium without giving the medium as a whole any permanent displacement. Each successive particle of the medium performs a motion similar to its predecessor’s but later in time, and returns to its origin. Whatever the nature of the medium that transmits the waves, be it air, a stretched string, a liquid, or an electrical cable, these two properties enable us to relate all wave motions together. Indeed, many types of waves are governed by a second-. order linear partial differential equation

$${\nabla ^2}\Psi = {1 \over {{c^2}}}{{{\partial ^2}\Psi } \over {\partial {t^2}}},$$

where Ψ(r, t) represents the disturbance traveling with the velocity c. Equation (2.1) is known as the wave equation.

The enormous and the minute are interchangeable manifestations of the eternal.

(William Blake)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Ben-Menahem A, Singh SJ (1968a) Eigenvector expansions of Green’s dyads with applications to geophysical theory. Geophys Jour Roy Astron Soc (London) 16: 417–452.

    Google Scholar 

  • Ben-Menahem A, Singh SJ (1968b) Multipolar elastic fields in a layered half-space. Bull Seismol Soc Amer 58: 1519–1572.

    Google Scholar 

  • Eisenhart LP (1934a) Separable systems of Stäckel. Ann Math 35: 284–305.

    Article  Google Scholar 

  • Eisenhart LP (1934b) Separable systems in Euclidean 3-space. Phys Rev 45: 427–428.

    Article  Google Scholar 

  • Erdélyi A (1937) Zur Theorie der Kugelwellen. Physica 4: 107–120.

    Article  Google Scholar 

  • Hansen WW (1935) A new type of expansion in radiation problems. Phys Rev 47: 139–143.

    Article  Google Scholar 

  • Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 25: 377–445.

    Article  Google Scholar 

  • Moon P, Spencer DE (1961) Field Theory Handbook. Springer, New York.

    Google Scholar 

  • Morse PM, Feshbach H (1953) Methods of Theoretical Physics, Parts I and II. McGraw-Hill, New York.

    Google Scholar 

  • Sommerfeld A (1909) Über die Ausbreitung der Wellen in der drahtlosen. Telegraphic Ann Phys 28: 665–736.

    Article  Google Scholar 

  • Sommerfeld A (1964) Partial Differential Equations in Physics. Academic Press, New York, 335 pp.

    Google Scholar 

  • Sternberg E, Eubanks RA (1957) On stress functions for elastokineics and the integration of the repeated wave equation. Quart Appl Math 15: 149–153.

    Google Scholar 

  • Stratton JA (1941) Electromagnetic Theory. McGraw-Hill, New York.

    Google Scholar 

  • Van der Pol B (1936) A generalization of Maxwell’s definition of solid harmonics to waves in n dimensions. Physica 3: 393–397.

    Article  Google Scholar 

  • Watson GN (1966) A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge, 804 pp.

    Google Scholar 

  • Weyl H (1919) Ausbreitung elektromagnetischer Wellen über einen ebenen Leiter. Ann Phys 60: 481–500.

    Article  Google Scholar 

  • Wheeler LT, Sternberg E (1968). Some theorems in classical elastodynamics. Archive for Rational Mechanics and Analysis 31: 51–90; Corrigendum 31: 402.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Ben-Menahem, A., Singh, S.J. (1981). Waves in Infinite Media. In: Seismic Waves and Sources. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5856-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5856-8_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5858-2

  • Online ISBN: 978-1-4612-5856-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics