Skip to main content

Seismic Wave Motion in Anelastic Media

  • Chapter

Abstract

Consider a mechanical linear oscillator with a single degree of freedom driven by an external time-dependent acceleration f(t). The time behavior of this system is governed by the equation

$$\ddot x + \frac{1}{Q}{\omega _0}\dot x + \omega _0^2x = f\left( t \right),\left( {Q \gg 1,\dot x = \frac{{dx}}{{dt}}} \right)$$

here Q is a dimensionless parameter to be studied later. Mathematically, the solution of Eq. (10.1), under the initial conditions x(0) = x 0, ẋ(0) = ẋ0 can formally be considered as the sum x(t) = x 1(t) + x 2(t) where

$${\ddot x_1}\left( t \right) + \frac{1}{Q}{\omega _0}{\dot x_1}\left( t \right) + \omega _0^2{x_1}\left( t \right) = 0,{\rm{ }}{x_1}\left( 0 \right) = {x_0},{\rm{ }}{\dot x_1}\left( 0 \right) = {\dot x_0},{\rm{ }}{\ddot x_2}\left( t \right) + \frac{1}{Q}{\omega _0}{\dot x_2}\left( t \right) + \omega _0^2{x_2}\left( t \right) = f\left( t \right),{\rm{ }}{x_2}\left( 0 \right) = 0,{\rm{ }}{\dot x_2}\left( 0 \right) = 0.{\rm{ }} $$

Men argue, Nature acts.

(Voltaire)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Alsop LE, Sutton GH, Ewing M (1961) Measurement of Q for very long period free oscillations. Jour Geophys Res 66: 2911–2915.

    Article  Google Scholar 

  • Anderson DL, Ben-Menahem A, Archambeau CB (1965). Attenuation of Seismic Energy in the Upper Mantle. Jour Geophys Res 70: 1441–1448.

    Article  Google Scholar 

  • Becker R (1925) Elastische Nachwirkung und Plastizität. Zeit Phys 33: 185–213.

    Article  Google Scholar 

  • Ben-Menahem A (1965) Observed attenuation and Q values of seismic surface waves in the upper mantle. Jour Geophys Res 70: 4641–4651.

    Article  Google Scholar 

  • Ben-Menahem A, Jeffreys H (1971) The saddle-point approximation for damped surface waves. Geophys Jour Roy Astron Soc (London) 24: 1–2.

    Google Scholar 

  • Boltzmann L (1876) Zur Theorie der elastischen Nachwirkung. Ann Phys Chem (Poggen-dorff) Ergänzungsband 7: 624–654.

    Google Scholar 

  • Borcherdt RD (1973) Energy and plane waves in linear viscoelastic media. Jour Geophys Res 78: 2442–2453.

    Article  Google Scholar 

  • Brune JN (1962) Attenuation of dispersed wave trains. Bull Seismol Soc Amer 52: 109–112.

    Google Scholar 

  • Canas JA, Mitchell B (1978) Lateral variations of surface-wave anelastic attenuation across the Pacific. Bull Seismol Soc Amer 68: 1637–1650.

    Google Scholar 

  • Collins F, Lee CC (1956) Seismic wave attenuation characteristics from pulse experiments. Geophysics 21: 16–40.

    Article  Google Scholar 

  • Findley WN, Lai JS, Onaran K (1976) Creep and Relaxation of Nonlinear Viscoelastic Materials. North-Holland, Amsterdam, 367 pp.

    Google Scholar 

  • Flügge W (1975) Viscoelasticity, 2nd edn. Springer-Verlag, erlin, 194 pp.

    Google Scholar 

  • Futterman WI (1962) Dispersive body waves. Jour Geophys Res 67: 5279–5291.

    Article  Google Scholar 

  • Gross B (1953) Mathematical structure of the Theories of Viscoelasticity. Publ Inst Natl Tech Brazil. Hermann and Co, Paris, 74 pp.

    Google Scholar 

  • Gurtin ME, Sternberg E (1962) On the linear theory of viscoelasticity. Arch Ration Mech Anal 11: 291–356.

    Article  Google Scholar 

  • Gutenberg B (1932) Theorie der Erdbebenwellen. Handbuch Geophys 4(2): 255–258.

    Google Scholar 

  • Jeffreys H (1976) The Earth, 6th edn. Cambridge University Press, Cambridge.

    Google Scholar 

  • Jeffreys H, Crampin S (1970) On the modified Lomnitz law of damping. Mon Not Roy Astron Soc (London) 147: 295–301.

    Google Scholar 

  • Kanamori H (1977) Importance of physical dispersion in surface wave and free oscillation problems: Review. Rev Geophys Space Phys. 15: 105–112.

    Article  Google Scholar 

  • Kelvin, Lord (William Thomson) (1890) Collected Works, Vol 3. Cambridge University Press, Cambridge, pp 1–112.

    Google Scholar 

  • Knopoff L (1956) The seismic pulse in materials possessing solid friction. I. Plane waves. Bull Seismol Soc Amer 46: 175–184.

    Google Scholar 

  • Knopoff L (1964) Q Rev Geophys 2: 625–660.

    Article  Google Scholar 

  • Kogan S Ya (1966) A brief review of seismic wave absorption theories, I, II (English translation). Bull Acad Sci USSR, Earth Phys 11: 671–683.

    Google Scholar 

  • Kolsky H (1956) The propagation of stress pulses in viscoelastic solids. Phil Mag (Ser 8) 1: 693–710.

    Article  Google Scholar 

  • Liu HP, Kanamori H (1976) Velocity dispersion due to anelasticity: Implications for seismology and mantle composition. Geophys Jour Roy Astron Soc (London) 47: 41–58.

    Google Scholar 

  • Macdonald JR (1959) Rayleigh-wave dissipation function in low-loss media. Geophys Jour Roy Astron Soc (London) 2: 132–135.

    Google Scholar 

  • Macdonald JR (1961) Theory and application of a superposition model of internal friction and creep. Jour Appl Phys 32: 2385–2398.

    Article  Google Scholar 

  • Marshall PD, Carpenter EW (1966). Estimates of Q for Rayleigh waves. Geophys Jour Roy Astron Soc (London) 10: 549–550.

    Google Scholar 

  • Maxwell JC (1866) Collected Works, Vol 2. Dover, New York, pp 26–78.

    Google Scholar 

  • Meyer OE (1874a) Zur Theorie der inner Reibung. Jour Reine Angew Math 78: 130–135.

    Article  Google Scholar 

  • Meyer OE (1874b) Theorie der elastischen Nachwirkung. Ann Phys 227: 108–119.

    Article  Google Scholar 

  • Mitchell B (1973) Radiation and attenuation of Rayleigh waves from the south-eastern Missouri earthquake of Oct 21,1965. Jour Geophys Res 78: 886–899.

    Article  Google Scholar 

  • Ness NF, Harrison JC, Slichter LB (1961) Observations of the free oscillations of the earth. Jour Geophys Res 66: 621–629.

    Article  Google Scholar 

  • Newlands M (1954) Lamb’s problem with internal dissipation, I. Jour Acoust Soc Amer 26: 434–448.

    Article  Google Scholar 

  • Nuttli OW (1973) Seismic wave attenuation and magnitude relations for eastern North America. Jour Geophys Res 78: 876–885.

    Article  Google Scholar 

  • Phillips P (1905) The slow stretch in India rubber, glass, and metal wires when subjected to a constant pull. Phil Mag (Ser 6) 9: 513–531.

    Article  Google Scholar 

  • Ricker N (1940) Wavelet functions and their polynomials. Geophysics 9: 314–323.

    Article  Google Scholar 

  • Sailor RV, Dziewonski AM (1978) Measurements and interpretation of normal mode attenuation. Geophys Jour Roy Astron Soc (London) 53: 559–581.

    Google Scholar 

  • Sezawa K (1927) On the decay of waves in viscoelastic solid bodies. Bull Earthquake Res Inst (Tokyo) 3: 43–54.

    Google Scholar 

  • Sezawa K, Kanai K (1938) Damping of periodic viscoelastic wave with increase in focal distance. Bull Earthquake Res Inst (Tokyo) 16: 491–503.

    Google Scholar 

  • Silva W (1976) A variational formulation for Love waves in a layered anelastic solid. Geophys Jour Roy Astron Soc (London) 45: 445–450.

    Google Scholar 

  • Singh SJ, Rosenman M (1973) Quasi-static strains and tilts due to faulting in a viscoelastic half-space. Bull Seismol Soc Amer 63: 1737–1752.

    Google Scholar 

  • Singh SJ, Rosenman M (1974) Quasi-static deformation of a viscoelastic half-space by shear dislocations. Phys Earth Planet Int 8: 87–101.

    Article  Google Scholar 

  • Sterling A, Smets E (1971) Study of earth tides, earthquakes and terrestrial spectroscopy by analysis of the level fluctuations in a borehole at Heibaart (Belgium). Geophys Jour Roy Astron Soc (London) 23: 225–242.

    Google Scholar 

  • Stokes, GG (1849) On the theories of the internal friction of fluids in motion and of the equilibrium and motion of elastic solids. Trans Camb Phil Soc 8: 287–319.

    Google Scholar 

  • Strick E (1967) The determination of Q, dynamic viscosity and transient creep curves from wave propagation measurements. Geophys Jour Roy Astron Soc (London) 13: 197–218.

    Google Scholar 

  • Trouton FT, Rankine AO (1904) On the stretching and torsion of lead wire beyond the elastic limit. Phil Mag (Ser 6) 8: 538–556.

    Article  Google Scholar 

  • Tryggvason E (1965) Dissipation of Rayleigh wave energy. Jour Geophys Res 70: 1449–1455.

    Article  Google Scholar 

  • Voigt W (1892) Über innere Reibung fester Körper, insbesondere der Metalle. Ann Phys 47: 671–693.

    Google Scholar 

  • Wesley JP (1965) Diffusion of seismic energy in the near range. Jour Geophys Res 70: 5099–5106.

    Article  Google Scholar 

  • Zener C (1948) Elasticity and Anelasticity of Metals. University of Chicago Press, Chicago.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Ben-Menahem, A., Singh, S.J. (1981). Seismic Wave Motion in Anelastic Media. In: Seismic Waves and Sources. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5856-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5856-8_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5858-2

  • Online ISBN: 978-1-4612-5856-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics