Skip to main content

Classical Continuum Dynamics

  • Chapter
Book cover Seismic Waves and Sources

Abstract

If a deformable body is subjected to the action of forces distributed over its surface, these forces are transmitted to every point in the interior of the body. As a result, the relative positions of its physical elements change. Unlike body forces, which act on each volume element within the body (e.g., gravitational forces), the surface forces act at an internal point P across a surface in which P is embedded. Consider a vectorial surface element through P, ΔS = nΔS, where the normal n is given with respect to some fixed Cartesian coordinate system. We may define the resultant force ΔF, acting on ΔS, as the measure of the action of the continuum I (on the side of ΔS toward which n is directed) on continuum II(Fig. 1.1). The ratio ΔF/ΔS is the average stress vector on ΔS. If the limit of this quotient exists as ΔS → 0 (n fixed), we write

$$\mathop {\lim }\limits_{\Delta S \to 0} {{\Delta {\bf{F}}} \over {\Delta S}} = {{d{\bf{F}}} \over {dS}} = {\bf{T}}\left( {\bf{n}} \right)$$

and call T the stress vector (or traction) at P associated with the normal n. In this connection, the following may be noted:

  1. 1.

    By Newton’s law of action and reaction, side II exerts upon side I an equal and opposite force; i.e.,

    $${\bf{T}}\left( { - {\bf{n}}} \right) = - {\bf{T}}\left( {\bf{n}} \right).$$
  2. 2.

    We assume that the stress vector at P associated with the normal n is independent of the surface used for its definition (Cauchy’s stress principle). This is a fundamental hypothesis. It allows us to replace the unknown actual intermolecular forces by a single force that depends upon two geometric entities alone, viz., the coordinates of the point relative to the applied surface forces and the orientation of the normal.

  3. 3.

    Given a finite surface S within the body, the total force acting across it is determined by the integral

    $$\int_S {{\bf{T}}\left( {\bf{n}} \right)dS.} $$

    This integral will vanish if S is a closed surface, provided no body forces (including inertial forces) are acting on the volume bounded by S. If the body forces are present, we shall assume that the surface forces transmitted into the continuum are, at each moment, in equilibrium with the body forces.

  4. 4.

    Equation (1.1) does not specify the nature of the functional relationship T(n). However, this can be found by solving a canonical problem that relates to the surface force distribution alone, with no body forces. If the whole body is in equilibrium under the action of the surface forces, so is an infinitesimal volume element around P. For the sake of simplicity, we choose it to be a tetrahedron PABC three of whose faces dS (i = 1, 2, 3) coincide with the coordinate planes. Because the sides of the tetrahedron are small, Eqs. (1.2) and (1.3) yield (Fig. 1.2)

    $$\int_S {{\bf{T}}\left( {\bf{n}} \right)dS} = {\bf{T}}\left( {\bf{n}} \right)d{S_n} + {\bf{T}}\left( { - {{\bf{e}}_1}} \right)d{S_1} + {\bf{T}}\left( { - {{\bf{e}}_2}} \right)d{S_2} + {\bf{T}}\left( { - {{\bf{e}}_3}} \right)d{S_3} = {\bf{T}}\left( {\bf{n}} \right)d{S_n} - {\bf{T}}\left( {{{\bf{e}}_1}} \right)d{S_1} - {\bf{T}}\left( {{{\bf{e}}_2}} \right)d{S_2} - {\bf{T}}\left( {{{\bf{e}}_3}} \right)d{S_3}, $$

    where e i (i = 1, 2, 3) is the unit vector along the x i direction and dS n is the area of the face ABC. Because dS i = n i dS n = (n. e i )dS n and the matter inside PABC is in equilibrium, we may write Eq. (1.4) formally as

    $${\bf{T}}\left( {\bf{n}} \right) = {\bf{n}} \cdot \left[ {{{\bf{e}}_1}{\bf{T}}\left( {{{\bf{e}}_1}} \right) + {{\bf{e}}_2}{\bf{T}}\left( {{{\bf{e}}_2}} \right) + {{\bf{e}}_3}{\bf{T}}\left( {{{\bf{e}}_3}} \right)} \right].$$

    Here, for example, T(e 1) denotes the stress vector across the x 1-plane with normal e 1. As the volume of the tetrahedron is allowed to shrink to zero, the plane ABC contains the point P and the vector T(n) becomes the stress vector at P associated with the normal n. Equation (1.5) shows that it is sufficient to know the value of the stress on three mutually perpendicular planes passing through the point P of the deformed body in order to evaluate the stress on an arbitrary plane passing through that point.

Man can only conquer nature by obeying her.

(Francis Bacon)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Cauchy AL (1823) Recherches sur l’équilibre et le mouvement intérieur des corps solides et fluides, élastiques ou non élastiques. Presented to the Paris Academy, 30 September, 1822. Bull Philomat, January 1823: 9–13.

    Google Scholar 

  • Cauchy AL (1827a) De la pression dans les fluides. Exercises de Mathématiques 2: 23–24.

    Google Scholar 

  • Cauchy AL (1827b) De la pression ou tension dans un corps solide. Exercices de Mathématiques 2: 41–56.

    Google Scholar 

  • Cauchy AL (1827c) Sur la condensation et la dilatation des corps solides. Exercices de Mathématiques 2: 60–69.

    Google Scholar 

  • Cauchy AL (1827d) Sur les relations qui existent, dans l’état d’équilibre d’un corps solide ou fluide, entre les pressions ou tensions et les forces accélératrices. Exercices de Mathématiques 2: 108–111.

    Google Scholar 

  • Cauchy AL (1827e) Sur les équations qui expriment les conditions d’équilibre, ou les lois du mouvement interier d’un corps solide, élastique, ou non élastique. Exercices de Mathématiques 2: 160–187.

    Google Scholar 

  • Lamé MG (1852) Leçons sur la Théorie Mathématique de l’Elasticité des Corps Solides. p. 335.

    Google Scholar 

  • Lamé MG, Clapeyron BPE (1833) Mémoire sur l’équilibre de corps solides homogénes. Reported to the Paris Academy by Poinsot and Navier, 29 September, 1828. Mémoires Présentées par divers Savans 4: 465–562.

    Google Scholar 

  • Navier L (1827) Mémoire sur les lois d’équilibre et du mouvement des corps solides élastiques. Read to the Paris Academy, 14 May, 1821. Mémoires de l’Institut 3: 375–393. (This memoir is the foundation of the modern theory of elastic solids.)

    Google Scholar 

  • Poisson SD (1827) Note sur les vibrations des corps sonores. Ann. Chim. Phys. 36: 86–93.

    Google Scholar 

  • Poisson SD (1829) Mémoire sur l’equilibre et le mouvement des corps elastiques. Read to the Paris Academy, 14 April, 1928. Mémoires de l’Academe 8: 357–570.

    Google Scholar 

  • Todhunter I, Pearson K (1960) A History of the Theory of Elasticity and the Strength of Materials, Vol I. Dover, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Ben-Menahem, A., Singh, S.J. (1981). Classical Continuum Dynamics. In: Seismic Waves and Sources. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5856-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5856-8_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5858-2

  • Online ISBN: 978-1-4612-5856-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics