Recent Achievements with Drosophila as an Assay System for Carcinogens

  • E. Vogel
Part of the Topics in Environmental Physiology and Medicine book series (TEPHY)


About 1911, T.H. Morgan began genetic studies with Drosophila. Since then the work with Drosophila has been greatly extended, because this test organism combines a eukaryotic organization with a unique range of test systems. Drosophila is the only in vivo test organism which permits the simultaneous and efficient testing of the various types of genetic lesions from the molecular to the chromosome level. Stocks are available or can be constructed to test in gonadal or somatic tissues for gene mutations, deletions, and for almost all possible types of chromosome rearrangements. Special test protocols have been devised to recover aneuploidy resulting from nondisjunctional events.


Vinyl Chloride Mutagenic Activity Pyrrolizidine Alkaloid Recent Achievement Aryl Hydrocarbon Hydroxylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahamson, S., Lewis, E.B. (1971): The detection of mutations in Drosophila melanogaster. In: A. Hollaender (ed.), Chemical Mutagens: Principles and Methods for Their Detection. New York: Plenum Press, pp. 461–487.Google Scholar
  2. Auerbach, C. (1962a): Mutation. An Introduction to Research on Mutagenesis. Part I: Methods, Edinburgh, London: Oliver and Boyd, 176 pp.Google Scholar
  3. Auerbach, C. (1962b): The production of visible mutations in Drosophila by chloroethyl methylsulfonate (CB 1506). Genet. Res. (Camb.) 3: 461–466.CrossRefGoogle Scholar
  4. Baars, A.J., Zijlstra, J.A., Vogel, E., Breimer, D.D. (1977): The occurrence of cytochrome P-450 and aryl hydrocarbon hydroxylase activity in Drosophila melanogaster microsomes, and the importance of this metabolizing capacity for the screening of carcinogenic and mutagenic properties of foreign compounds. Mutat. Res. 44: 257–268.PubMedCrossRefGoogle Scholar
  5. Baars, A.J., Zijlstra, J.A., Jansen, M., Vogel, E., Breimer, D.D. (1979): Xenobiotica-metabolizing enzymes in Drosophila melanogaster. In: 21st Congress of the European Society of Toxicology Dresden, June (abstract).Google Scholar
  6. Baker, B.S., Boyd, J.B., Carpenter, A.T.C., Green, M.M., Nguyen, T.D., Ripoll, P., Smith, P.D. (1976): Genetic controls of meiotic recombination and somatic DNA metabolism in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 73: 4140–4144.PubMedCrossRefGoogle Scholar
  7. Berkowitz, S. (1978): The induction of II-III translocations by tris (2,3-dibromopropyl) phosphate in Drosophila. Mutat. Res. 57: 385–387.PubMedGoogle Scholar
  8. Bertram, C., Höhne, G. (1959): Über die radio-mimetische Wirkung einiger Zytostatika im Mutationsversuch an Drosophila. Strahlentherapie 43: 388–391.PubMedGoogle Scholar
  9. Blijleven, W.G.H., Vogel, E. (1977): The mutational spectrum of procarbazine in Drosophila melanogaster. Mutat. Res. 45: 47–59.PubMedCrossRefGoogle Scholar
  10. Boyd, J.B., Setlow, R.B. (1976): Characterization of postreplication repair in mutagen-sensitive strains of Drosophila melanogaster. Genetics 84: 501–526.Google Scholar
  11. Boyd, J.B., Golino, M.D., Nguyen, T.D., Green, M.M. (1976a): Isolation and characterization of X-linked mutants of Drosophila melanogaster which are sensitive to mutagens. Genetics 84: 485–506.PubMedGoogle Scholar
  12. Boyd, J.B., Golino, M.D., Setlow, R.B. (1976b): The mei-9a mutant of Drosophila melanogaster increases mutagen sensitivity and decreases excision repair. Genetics 84: 527–544.PubMedGoogle Scholar
  13. Brink, N.G. (1963): The effect of cyanide and azide on the mutagenic activity of the pyrrolizidine alkaloid heliotrine in Drosophila melanogaster. Z. Vererbungsl. 94: 331–335.PubMedCrossRefGoogle Scholar
  14. Brink, N.G. (1966): The mutagenic activity of heliotrine in Drosophila. I. Complete and mosaic sex-linked lethals. Mutat. Res. 3: 66–72.PubMedCrossRefGoogle Scholar
  15. Brink, N.G. (1969): The mutagenic activity of the pyrrolidine alkaloid heliotrine in Drosophila melanogaster. II. Chromosome rearrangements. Mutat. Res. 5: 138–146.Google Scholar
  16. Burdette, W.J. (1952): Tumor incidence and lethal mutation rate in Drosophila treated with 20-methylcholanthrene. Cancer Res. 72: 201–205.Google Scholar
  17. Clark, A.M. (1959): Mutagenic activity of the alkaloid heliotrine in Drosophila. Nature (Lond.) 183: 731–732.CrossRefGoogle Scholar
  18. Clark, A.M. (1960): The mutagenic activity of some pyrrolidine alkaloids in Drosophila. Z. Vererbungsl. 97: 74–80.CrossRefGoogle Scholar
  19. Clark, A.M. (1963): The brood pattern of sensitivity of the Drosophila testis to the mutagenic action of heliotrine. Z. Vererbungsl. 94: 115–120.CrossRefGoogle Scholar
  20. Cook, L.M., Holt, A.C.E. (1966): Mutagenic activity in Drosophila of two pyrrolidine alkaloids. J. Genet. 59: 273–274.CrossRefGoogle Scholar
  21. Demerec, M., Kaufmann, B.P. (1973): Drosophila Guide: Introduction to the Genetics and Cytology of Drosophila melanogaster. Washington DC, Carnegie Institute, 45 pp.Google Scholar
  22. Demerec, M., Wallace, B., Witkin, E.M., Bertani, G. (1949): The gene. Carnegie Institute of Washington Yearbook, 48: 156–186.Google Scholar
  23. Fahmy, M.J., Fahmy, O.G. (1977): Mutagenicity of hair dye components relative to the carcinogenic benzidine in Drosophila melanogaster. Mutat. Res. 56: 31–38.PubMedCrossRefGoogle Scholar
  24. Fahmy, O.G., Fahmy, M.J. (1969): Specific genetic deletions by a carcinogenic hydrocarbon in Drosophila. Nature (Lond.) 224: 1328–1329.CrossRefGoogle Scholar
  25. Fahmy, O.G., Fahmy, M.J. (1970a): Genetic deletions at specific loci by polycyclic hydrocarbons in relation to carcinogenesis. Int. J. Cancer 6: 250–260.PubMedCrossRefGoogle Scholar
  26. Fahmy, O.G., Fahmy, M.J. (1970b): Gene elimination in carcinogenesis: reinterpretation of the somatic mutation theory. Cancer Res. 50: 195–205.Google Scholar
  27. Fahmy, O.G., Fahmy, M.J. (1970c): Induction of bobbed (bb) mutations by polycyclic aromatic carcinogens in Drosophila. Mutat. Res. 9: 239–243.PubMedCrossRefGoogle Scholar
  28. Fahmy, O.G., Fahmy, M.J. (1972a): Mutagenic selectivity for the RNA-forming genes in relation to the carcinogenicity of alkylating agents and polycyclic aromatics. Cancer Res. 52: 550–557.Google Scholar
  29. Fahmy, O.G., Fahmy, M.J. (1972b): Mutagenic properties of N-acetyl-2-aminofluorene and its metabolites in relation to the molecular mechanisms of carcinogenesis. Int. J. Cancer 9: 285–298.PubMedCrossRefGoogle Scholar
  30. Fahmy, O.G., Fahmy, M.J. (1972c): Genetic properties of substituted derivatives of N- methyl-4-aminobenzene in relation to azo-dye carcinogenesis. Int. J. Cancer 70: 194–206.CrossRefGoogle Scholar
  31. Fahmy, O.G., Fahmy, M.J. (1973a): Mutagenic properties of benzo(a)pyrene and its methylated derivatives in relation to the molecular mechanisms of hydrocarbon carcinogenesis. Cancer Res. 55: 302–309Google Scholar
  32. Fahmy, O.G., Fahmy, M.J. (1973b): Oxidative activation of benz(a)anthracene and methylated derivatives in mutagenesis and carcinogenesis. Cancer Res. 55: 2354–2361.Google Scholar
  33. Fahmy, O.G., Fahmy, M.J. (1975): Mutagenic selectivity of carcinogenic nitroso compounds. II. N, N-Dimethylnitrosamine. Chem. Biol. Interact. 77: 395–412.CrossRefGoogle Scholar
  34. Fahmy, O.G., Fahmy, M.J., Massasso, J., Ondrej, M. (1966): Differential mutagenicity of the amine and amide derivatives of nitroso compounds in Drosophila melanogaster. Mutat. Res. 5: 201–217.Google Scholar
  35. Henke, H., Höhne, G., Kiinkel, H.A. (1964): Über die mutagene Wirkung von Röntgen-strahlen, N-nitroso-N-methyl-urethan und N-nitroso-morpholin bei Drosophila melanogaster. Biophysik 7: 418–421.CrossRefGoogle Scholar
  36. Herskowitz, I.H. (1947): A new method for treating Drosophila gametes with chemicals. Evolution 7: 111–112.CrossRefGoogle Scholar
  37. Hollstein, M., McCann, J., Angelosanto, F.A., Nichols, W.W. (1979): Short-term tests for carcinogens and mutagens. Mutat. Res. 65: 133–226.PubMedGoogle Scholar
  38. Hotchkiss, S.K., Lim, J.K. (1968): Mutagenic specificity of ethyl methanesulfonate affected by treatment method. Dros. Inf. Serv. 43: 116.Google Scholar
  39. King, M.-T., Beikirch, H., Eckhardt, K., Gocke, E., Wild, D. (1979): Mutagenicity studies with X-ray-contrast media, analgetics, antipyretics, antirheumatics and some other pharmaceutical drugs in bacterial, Drosophila and mammalian test systems. Mutat. Res. 66: 33–43.PubMedCrossRefGoogle Scholar
  40. Kolar, G.F., Fahrig, R., Vogel, E. (1974): Structure-activity dependence in some novel ring-substituted 3,3-dimethyl-l-phenyltriazenes. Genetic effects in Drosophila melanogaster and in Saccharomyces cerevisiae by a direct and a host-mediated assay. Chem.-Biol. Interact. 9: 365–378.CrossRefGoogle Scholar
  41. Kortselius, M.J.H. (1979): Induction of sex-linked recessive lethals and autosomal translocations by beta-propiolactone in Drosophila: influence of the route of administration on mutagenic activity. Mutat. Res. 66: 55–63.PubMedCrossRefGoogle Scholar
  42. Lamb, M.J., Lilly, L.J. (1971): Induction of recessive lethals in Drosophila melanogaster by aflatoxin Bx. Mutat. Res. 17: 430–433.Google Scholar
  43. Lindsley, D.L., Grell, E.H. (1968): Genetic Variations of Drosophila melanogaster, Washington, DC, Carnegie Institute Publication No. 627, 472 pp.Google Scholar
  44. Magnusson, J., Ramel, C. (1976): Mutagenic effects of vinyl chloride in Drosophila melanogaster. Mutat. Res. 35: 115.Google Scholar
  45. Magnusson, J., Ramel, C. (1978a): Mutagenic effects of vinyl chloride on Drosophila melanogaster with and without pretreatment with sodium phenobarbiturate. Mutat. Res. 57: 307–312.PubMedGoogle Scholar
  46. Magnusson, J., Ramel, C. (1978b): Mutagenic effects of thioacetamide in Drosophila melanogaster. Mutat. Res. 58: 253–262.Google Scholar
  47. Magnusson, J., Hallstrom, I., Ramel, C. (1979): Studies on metabolic activation of vinyl chloride in Drosophila melanogaster after pre-treatment with phenobarbital and polychlorinated biphenyls. Chem.-Biol. Interact. 24: 287–298.PubMedCrossRefGoogle Scholar
  48. Muller, H.J., Oster, J.J. (1961): Some mutational techniques in Drosophila. In: W.J. Burdette (ed.), Symposium on Methodology in Basic Genetics. San Francisco: Holden Day Inc., pp. 249–267.Google Scholar
  49. Nguyen, T.D., Boyd, J.B. (1977): The meiotic-9 (mei-9) mutants of Drosophila melanogaster are deficient in repair replication of DNA. Mol. Gen. Genet. 758: 141–147.CrossRefGoogle Scholar
  50. Nguyen, T.D., Green, M.M., Boyd, J.B. (1978): Isolation of two X-linked mutants in Drosophila melanogaster which are sensitive to gamma-rays. Mutat. Res. 49: 139–143.PubMedCrossRefGoogle Scholar
  51. Nguyen, T.D., Boyd, J.B., Green, M.M. (1979): Sensitivity of Drosophila mutants to chemical carcinogens. Mutat. Res. 65: 67–77.Google Scholar
  52. Nix, C.E., Brewen, B., Wilkerson, R., Lijinsky, W., Epler, J.L. (1979): Effects of N-nitrosopiperidine substitutions on mutagenicity in Drosophila melanogaster. Mutat. Res. 67: 27–38.PubMedCrossRefGoogle Scholar
  53. Pasternak, L. (1962): Mutagene Wirkung von Dimethylnitrosamin bei Drosophila melanogaster. Naturwissenschaften. 49: 81.CrossRefGoogle Scholar
  54. Pasternak, L. (1963): Untersuchungen über die mutagene Wirkung verschiedener Ni-trosamine und Nitrosomethylharnstoff. Acta. Biol. Med. Ger. 70: 436–438.Google Scholar
  55. Pasternak, L. (1964): Untersuchungen über die mutagene Wirkung verschiedener Ni-trosamin-und Nitrosamid-Verbindungen. Arzneimittelforsch. 74: 802–804.Google Scholar
  56. Röhrborn, G. (1968): Chemische Konstitution und mutagene Wirkung. IV. Zyklische N-Lostderivate. Mol. Gen. Genet. 702: 50–68.Google Scholar
  57. Sega, G.A., Lee, W.R. (1970): A vacuum injection technique for obtaining uniform dosages in Drosophila melanogaster. Dros. Inf. Serv. 45: 179.Google Scholar
  58. Shukla, P.T., Auerbach, C. (1979): The delayed mutagenic action of hydroxylamine in Drosophila. Mutat. Res. 67: 399–400.Google Scholar
  59. Smith, P.D. (1973): Mutagen-sensitivity of Drosophila melanogaster. I. Isolation and preliminary characterization of a MMS-sensitive strain. Mutat. Res. 20: 215–220.PubMedCrossRefGoogle Scholar
  60. Smith, P.D. (1976): Mutagen-sensitivity of Drosophila melanogaster. III. X-Linked loci governing sensitivity to methyl methanesufonate. Mol. Gen. Genet. 749: 73–85.CrossRefGoogle Scholar
  61. Spencer, W.P., Stern, C. (1948): Experiments to test the validity of the linear r-dose/mutation frequency relation in Drosophila at low dos-age. Genetics 33: 43–74.Google Scholar
  62. Srám, R.J. (1972): The differences in the spectra of genetic changes in Drosophila melanogaster induced by chemosterilants TEPA and HEMPA. Folia Biol. (Praha) 75: 139–148.Google Scholar
  63. Verburgt, F.G., Vogel, E. (1977): Vinyl chloride mutagenesis in Drosophila melanogaster. Mutat. Res. 45: 327–336.Google Scholar
  64. Vogel, E. (1971): Chemische Konstitution und mutagene Wirkung. VI. Induktion dominanter und rezessiv-geschlechtsgebundener Letal-mutationen durch Aryldialkyltriazene bei Drosophila melanogaster. Mutat. Res. 77: 397–410.Google Scholar
  65. Vogel, E. (1975a): Some aspects of the detection of potential mutagenic agents in Drosophila. Mutat. Res. 29: 241–250.PubMedCrossRefGoogle Scholar
  66. Vogel, E. (1975b): Mutagenic activity of cyclo-phosphamide, trofosfamide, and ifosfamide in Drosophila melanogaster. Specific induction of recessive lethals in the absence of detectable chromosome breakage. Mutat. Res. 33: 221–228.PubMedCrossRefGoogle Scholar
  67. Vogel, E. (1976a): The relation between mutational pattern and concentration by chemical mutagens in Drosophila. In: R. Montesano, H. Bartsch and L. Tomatis (eds.), Screening Tests in Chemical Carcinogenesis (IARC Scientific Publications No. 12 ). Lyon: International Agency for Research on Cancer, pp. 117–132.Google Scholar
  68. Vogel, E. (1976b): Mutagenicity of carcinogens in Drosophila as a function of genotype-controlled metabolism. In: F.J. de Serres, J.R. Fouts, J.R. Bend, and R.M. Philpot (eds.), In Vitro Metabolic Activation in Mutagenesis Testing. Amsterdam: Elsevier/North-Holland Biomedical Press, pp. 63–79.Google Scholar
  69. Vogel, E. (1977): Identification of carcinogens by mutagen testing in Drosophila: the relative reliability for the kinds of genetic damage measured. In: H.H. Hiatt, J.D. Watson, and J.A. Winsten (eds.), Origins of Human Cancer, Book C. New York, Cold Spring Harbor Laboratory, pp. 1483–1497.Google Scholar
  70. Vogel, E. (1979): Mutagenicity of chloroprene, 1-chloro-1,3-trans-butadiene, 1,4-dichlorobutene-2 and l,4-dichloro-2,3-epoxybutane in Drosophila melanogaster. Mutat. Res. 67: 377–381.PubMedCrossRefGoogle Scholar
  71. Vogel, E., Chandler, J.L.R. (1974): Mutagenicity testing of cyclamate and some pesticides in Drosophila melanogaster. Experientia 30: 621–623.PubMedCrossRefGoogle Scholar
  72. Vogel, E., Leigh, B. (1975): Concentration-effect studies with MMS, TEB, 2,4,6-TriCl-PDMT, and DEN on the induction of dominant and recessive lethals, chromosome loss and translocations in Drosophila sperm. Mutat. Res. 29: 383–396.PubMedCrossRefGoogle Scholar
  73. Vogel, E., Lüers, H. (1974): A comparison of adult feeding to injection in Drosophila melanogaster. Dros. Inf. Serv. 51: 113–114.Google Scholar
  74. Vogel, E., Natarajan, A.T. (1979a): The relation between reaction kinetics and mutagenic action of monofunctional alkylating agents in higher eukaryotic systems. I. Recessive lethal mutations and translocations in Drosophila. Mutat. Res. 62: 51–100.PubMedCrossRefGoogle Scholar
  75. Vogel, E., Natarajan, A.T. (1979b): The relation between reaction kinetics and mutagenic action of monofunctional alkylating agents in higher eukaryotic systems. II. Total and partial sex-chromosome loss in Drosophila. Mutat. Res. 62: 101–123.PubMedCrossRefGoogle Scholar
  76. Vogel, E., Sobels, F.H. (1976): The function of Drosophila in genetic toxicology testing. In: A. Hollaender (ed.), Chemical Mutagens: Principles and Methods for Their Detection, Vol. 4. New York: Plenum Press, pp. 93–142.Google Scholar
  77. Vogel, E., Fahrig, R., Obe, G. (1973): Triazenes, a new group of indirect mutagens; comparative investigations of the genetic effects of different aryldialkyl triazenes using Saccharomyces cerevisiae, the host-mediated assay, Drosophila melanogaster, and human chromosomes in vitro. Mutat. Res. 21: 123–136.PubMedCrossRefGoogle Scholar
  78. Würgler, F.E., Graf, U., Berchtold, W. (1975): Statistical problems connected with the sex-linked recessive lethal test in Drosophila melanogaster. I. The use of the Kastenbaum-Bowman test. Arch. Genet. 45: 158–178.Google Scholar
  79. Würgler, F.E., Sobels, F.H., Vogel, E. (1977): Drosophila as assay system for detecting genetic changes. In: B.J. Kilbey, M. Legator, W. Nichols, and C. Ramel (eds.), Handbook of Mutagenicity Test Procedures. Amsterdam: Elsevier/North-Holland Biomedical Press, pp. 335–373.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • E. Vogel

There are no affiliations available

Personalised recommendations