Advertisement

Plant Genetic Test Systems for the Detection of Chemical Mutagens

  • William F. Grant
  • A. E. Zinov’eva-Stahevitch
  • K. D. Zura
Part of the Topics in Environmental Physiology and Medicine book series (TEPHY)

Abstract

Higher plants provide valuable systems for screening and monitoring environmental chemicals. Although plant screening and monitoring assay systems have been in existence for many years, they are only beginning to receive the recognition which these sensitive and reliable systems warrant (de Serres, 1978). A general lack of familiarity with plant mutagenesis research, and the belief that plant and animal cells diverge so greatly in their physiology and phylogeny as to make comparisons meaningless, has led to a dearth of interest in, and funding for, plant mutagenesis. Recent symposia on the subject (Hart et al., 1978; de Serres, 1978) may help improve the situation.

Keywords

Pollen Tube Sister Chromatid Chromosome Aberration Sister Chromatid Exchange Chemical Mutagen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beck, B., Obe, G. (1975): The human leucocyte test system. VI. The use of sister chromatid exchanges as possible indicators for mutagenic activities. Humangenetik 29: 127–134.CrossRefGoogle Scholar
  2. Bentzer, B., Landstrom, T. (1975): Polymorphism in chromosomes of Leopoldia comosa (Liliaceae) revealed by Giemsa staining. Hereditas 80: 219–232.PubMedCrossRefGoogle Scholar
  3. Blixt, S. (1972): Mutation genetics in Pisum. Agri Hort. Genet. 30: 1 - 293.Google Scholar
  4. Bruce, W.R., Heddle, J.A. (1979): The mutagenic activity of 61 agents as determined by the micronucleus, Salmonella and sperm abnormality assays. Can. J. Genet. Cytol. 21: 319–334.PubMedGoogle Scholar
  5. Christianson, M.L., Chiscon, M.O. (1978): Use of haploid plants as bioassays for mutagens. Environ. Health Perspect. 27: 77–83.PubMedGoogle Scholar
  6. Clive, D., Spector, J.F.S. (1978): Comparative chemical mutagenesis: An overview. In: F.J. de Serres (ed.), Proceedings of Comparative Chemical Mutagenesis Workshop. NIEHS. Research Triangle Park, N.C.Google Scholar
  7. Conger, A.D., Fairchild, L.M. (1953): A quick- freeze method for making smear slides permanent. Stain Technol. 28: 281–283.PubMedGoogle Scholar
  8. Conger, B.V., Carabia, J.V. (1977): Mutagenic effectiveness and efficiency of sodium azide versus ethyl methanesulfonate in maize: Induction of somatic mutations at the yg 2 locus by treatment of seeds differing in metabolic state and cell population. Mutat. Res. 46: 285– 296.PubMedGoogle Scholar
  9. Constantin, M.J. (1978): Utility of specific locus systems in higher plants to monitor for mutagens. Environ. Health Perspect. 27: 69–75.PubMedCrossRefGoogle Scholar
  10. de Serres, F.J. (1978): Introduction: Utilization of higher plant systems as monitors of environmental mutagens. Environ. Health Perspect. 27: 3–6.PubMedCrossRefGoogle Scholar
  11. de Vries, J.M., Sybenga, J. (1976): Identification of rye chromosomes: the Giemsa banding pattern and the translocation tester set. Theoret. Appl. Genet. 48: 35–43.CrossRefGoogle Scholar
  12. Döbel, P., Rieger, R., Michaelis, A. (1973): The Giemsa banding patterns of the standard and four reconstructed karyotypes of Vicia faba. Chromosoma 43: 409–422.PubMedCrossRefGoogle Scholar
  13. DuPraw, E.J. (1970): DNA and Chromosomes. New York: Holt, Rinehart and Winston.Google Scholar
  14. Ehrenberg, L. (1971): Higher plants. In: A. Hollaender (ed.), Chemical Mutagens: Principles and Methods for Their Detection, Vol. 2. New York: Plenum Press, pp. 365–386.Google Scholar
  15. Ehrenberg, L., Gustafsson, A., Lundqvist, U. (1961): Viable mutants induced in barley by ionizing radiations and chemical mutagens. Hereditas 47: 243– 282.CrossRefGoogle Scholar
  16. Ehrendorfer, F., Schweizer, D., Greger, H., Humphries, C. (1977): Chromosome banding and synthetic systematics in Anacyclus (Asteraceae-Anthemideae). Taxon. 26: 387–394.CrossRefGoogle Scholar
  17. Endrizzi, J.E., Brown, M.S. (1968): Cytological and genetical studies of the hybrid of Gos- sypium herbaceum L. and G. triphyllum Hoch. Genetica 39: 272–288.CrossRefGoogle Scholar
  18. Feder, W.A. (1978): Plants as bioassay systems for monitoring atmospheric pollutants. Environ. Health Perspect. 27: 139–147.PubMedCrossRefGoogle Scholar
  19. Filion, W.G., Blakey, D.H. (1979): Differential Giemsa staining in plants. VI. Centromeric banding. Can. J. Genet. Cytol. 27: 373–378.Google Scholar
  20. Freeling, M. (1978): Maize Adhl as a monitor of environmental mutagens. Environ. Health Perspect. 21: 91–97.CrossRefGoogle Scholar
  21. Gatti, M., Pimpinelli, S., Olivieri, G. (1974): The frequency and distribution of isolabelling in Chinese hamster chromosomes after exposure to X-rays. Mutat. Res. 23: 229– 238.PubMedCrossRefGoogle Scholar
  22. Gill, B.S., Kimber, G. (1974a): The Giemsa C- banded karyotype of rye. Proc. Natl. Acad. Sci. USA 71: 1247–1249.PubMedCrossRefGoogle Scholar
  23. Gill, B.S., Kimber, G. (1974b): Giemsa C-banding and the evolution of wheat. Proc. Natl. Acad. Sci. USA 71: 4086–4090.PubMedCrossRefGoogle Scholar
  24. Grant, W.F. (1978): Chromosome aberrations in plants as a monitoring system. Environ. Health Perspect. 27: 37–43.PubMedCrossRefGoogle Scholar
  25. Grant, W.F., Harney, P.M. (1960): Cytogenetic effects of maleic hydrazide treatment of tomato seed. Can. J. Genet. Cytol. 2: 162–174.Google Scholar
  26. Grielhuber, J., Speta, F. (1976): C banded karyotypes in the Scilla hohenackeri group. S. persica and Puschkinia (Liliaceae). Plant Syst. Evol. 126: 149– 188.Google Scholar
  27. Hadlaczky, Gy., Belea, A. (1975): C-banding in wheat evolutionary cytogenetics. Plant Sci. Lett. 4: 85–88.CrossRefGoogle Scholar
  28. Hadlaczky, Gy., Kalman, L. (1975): Discrimination of homologous chromosomes of maize with Giemsa staining. Heredity 35: 371–374.CrossRefGoogle Scholar
  29. Hart, R.W., Kraybill, H.F., de Serres, F.J. (1978): A Rational Evaluation of Pesticidal vs. Mutagenic/Carcinogenic Action. U.S. Dept. Health, Education and Welfare, DHEW Publ. No. (NIH) 78–1306. 122 pp.Google Scholar
  30. Kato, H. (1974): Induction of sister chromatid exchanges by chemical mutagens and its possible relevance to DNA repair. Exp. Cell Res. 85: 239–247.PubMedCrossRefGoogle Scholar
  31. Kato, H. (1977): Spontaneous and induced sister chromatid exchanges as revealed by the BUdR-labeling method. Int. Rev. Cytol. 49:55–91.PubMedCrossRefGoogle Scholar
  32. Kenton, A. (1978): Giemsa C-banding in Gibasis (Commelinaceae). Chromosoma 65: 309–324.CrossRefGoogle Scholar
  33. Kihlman, B.A. (1971): Root tips for studying the effects of chemicals on chromosomes. In: A. Hollaender (ed.), Chemical Mutagens: Principles and Methods for Their Detection, Vol. 2. New York: Plenum Press, pp. 489–514.Google Scholar
  34. Kihlman, B.A. (1975): Root tips of Vicia faba for the study of the induction of chromosomal aberrations. Mutat. Res. 31: 401– 412.Google Scholar
  35. Kihlman, B.A., Kronborg, D. (1975): Sister chromatid exchanges in Vicia faba. I. Demonstration by a modified fluorescent plus Giemsa (FPG) technique. Chromosoma 51: 1–10.CrossRefGoogle Scholar
  36. Kihlman, B.A., Natarajan, A.T., Andersson, H.C. (1978): Use of the 5-bromodeox- yuridine-labelling technique for exploring mechanisms involved in the formation of chromosomal aberrations. I. G2 experiments with root-tips of Vicia faba. Mutat. Res. 52: 181–198.CrossRefGoogle Scholar
  37. Klasterska, I., Natarajan, A.T. (1975): Distribution of heterochromatin in the chromosomes of Nigella damascena and Vicia faba. Hereditas 79: 154–156.PubMedCrossRefGoogle Scholar
  38. Klekowski, E.J., Jr. (1978): Screening aquatic ecosystems for mutagens with fern bioassays. Environ. Health Perspect. 27: 99–102.PubMedGoogle Scholar
  39. Komatsu, H., Tanaka, R. (1978): Morphological changes of C-bodies in the mitotic cycle of Crepis vesicaria ssp. taraxacifolia. Proc. Jpn. Acad. Ser. B. 54: 228–233.CrossRefGoogle Scholar
  40. Koranda, J.J., Robison, W.L. (1978): Accumulation of radionuclides by plants as a monitor system. Environ. Health Perspect. 27: 165–179.PubMedCrossRefGoogle Scholar
  41. Kranz, A.R. (1976): Karyotype analysis in meiosis: Giemsa banding in the genus Secale L. Theoret. Appl. Genet. 47: 101–107.CrossRefGoogle Scholar
  42. La Cour, L., Fabergé, A.C. (1943): The use of cellophane in pollen tube technic. Stain Technol. 18: 196.Google Scholar
  43. Lamm, R. (1945): Cytogenetic studies in Solarium sect. tuberosum. Hereditas 31: 1–128.PubMedCrossRefGoogle Scholar
  44. Levan, A. (1938): The effect of colchicine on root mitosis of Allium. Hereditas 24: 471–486.CrossRefGoogle Scholar
  45. Levan, A. (1949): The influence on chromosomes and mitosis of chemicals, as studied by the Allium test. Proc. Eighth Int. Congr. Genet. Stockholm. Hereditas, Suppl. pp. 325–337.Google Scholar
  46. Linde-Laursen, Ib. (1975): Giemsa C-banding of the chromosomes of ‘Emir’ barley. Hereditas 81: 285–289.CrossRefGoogle Scholar
  47. Ma, T.-H., Khan, S.H. (1976): Pollen mitosis and pollen tube growth inhibition by S02 in cultured pollen tubes of Tradescantia. Environ. Res. 12: 144–149.PubMedCrossRefGoogle Scholar
  48. Marks, G.E. (1974): Giemsa banding of meiotic chromosomes in Anemone blanda. Chromosoma 49: 113–119.CrossRefGoogle Scholar
  49. Marks, G.E. (1975): The Giemsa-staining centromeres of Nigella damascena. J. Cell Sci. 18: 19–25.PubMedGoogle Scholar
  50. Marks, G.E., Schweizer, D. (1974): Giemsa banding differences in Anemone and Hepatica. Chromosoma 44: 405–416.CrossRefGoogle Scholar
  51. Mericle, L.W., Mericle, R.P. (1967): Genetic nature of somatic mutations for flower color in Tradescantia, clone 02. Radiat. Bot. 7: 449 –464.Google Scholar
  52. Mulcahy, D.L., Johnson, C.M. (1978): Self-incompatibility systems as bioassays for mutagens. Environ. Health Perspect. 27: 85–90.PubMedCrossRefGoogle Scholar
  53. Nakata, N., Yasumuro, Y., Sasaki, M. (1977): An acetocarmine-Giemsa staining of rye chromosomes. Jpn. J. Genet. 52: 315–318.CrossRefGoogle Scholar
  54. Nettancourt, D. de. (1977): Incompatibility in Angiosperms. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
  55. Nicoloff, H., Gecheff, K. (1976): Methods of scoring induced chromosome structural changes in barley. Mutat. Res. 34: 233–244.CrossRefGoogle Scholar
  56. Nilan, R.A. (1964): The Cytology and Genetics of Barley, 1951–1962. Monogr. Suppl. No. 31, Res. Studies, Washington State Univ. Press.Google Scholar
  57. Nilan, R.A. (1974): Barley (Hordeum vulgare) In: R.C. King (ed.), Handbook of Genetics. Vol. 2. Plants, Plant Viruses and Protists. New York: Plenum Press, pp. 93–110.Google Scholar
  58. Nilan, R.A. (1978): Potential of plant genetic systems for monitoring and screening mutagens. Environ. Health Perspect. 27: 181–186.PubMedCrossRefGoogle Scholar
  59. Nilan, R.A., Vig, B.K. (1976): Plant test systems for detection of chemical mutagens. In: A. Hollaender (ed.), Chemical Mutagens: Principles and Methods for Their Detection, Vol. 4. New York: Plenum Press, pp. 143–170.Google Scholar
  60. Pandey, K.K. (1964): Elements of the 5-gene complex. I. The SFI alleles in Nicotiana. Genet. Res. 5: 397–409.CrossRefGoogle Scholar
  61. Peacock, W.J. (1963): Chromosome duplication and structure as determined by autoradiography. Proc. Natl. Acad. Sci. USA 49: 793–801.PubMedCrossRefGoogle Scholar
  62. Perry, P., Evans H.J. (1975): Cytological mutagen-carcinogen exposure by sister chromatid exchange. Nature (London) 258: 121–125.CrossRefGoogle Scholar
  63. Plewa, M.J. (1978): Activation of chemicals into mutagens by green plants: A preliminary discussion. Environ. Health Perspect. 27: 45–50.PubMedCrossRefGoogle Scholar
  64. Read, J. (1959): Radiation Biology of Vicia faba in Relation to the General Problem. Oxford: Blackwell, 270 pp.Google Scholar
  65. Redei, G.P. (1974): Arabidopsis thaliana. In: R.C.King (ed.), Handbook of Genetics. Vol. 2. Plants, Plant Viruses and Protists, New York: Plenum Press, pp. 151–180.Google Scholar
  66. Redei, G.P., Acedo, G. (1976): Biochemical mutants in higher plants. In: D. Dudits, G.L. Farkas, P. Maliga (eds.), Cell Genetics in Higher Plants, Budapest: Akademiae Kiado, p. 39.Google Scholar
  67. Rosichan, J., Arenaz, P., Nilan, R.A. (1979): A high resolution plant mutagen monitoring system. Genetics 92:sl08.Google Scholar
  68. Rushton, P.S. (1969): The effects of 5-fluorodeoxyuridine on radiation-induced chromatid aberrations in Tradescantia microspores. Radiat. Res. 38: 404–413.PubMedCrossRefGoogle Scholar
  69. Sachan, J.K.S., Tanaka, R. (1977): Variation and pattern of C-banding in Zea chromosomes. Nucleus 20: 61–64.Google Scholar
  70. Sax, K., Sax, H.J. (1968): Possible mutagenic hazards of some food additives, beverages and insecticides. Jpn. J. Genet. 43: 89–94.CrossRefGoogle Scholar
  71. Schairer, L.A., Van’t Hof, J., Hayes, C.G., Burton, R.M., de Serres, F.J. (1978): Exploratory monitoring of air pollutants for mutagenicity activity with the Tradescantia stamen hair system. Environ. Health Perspect. 27: 51–60.Google Scholar
  72. Schvartzman, J.B., Cortes, F. (1977): Sister chromatid exchanges in Allium cepa. Chro- mosoma 62: 119–131.Google Scholar
  73. Schweizer, D. (1973): Differential staining of plant chromosomes with Giemsa. Chromosoma 40: 307–320.CrossRefGoogle Scholar
  74. Schweizer, D. (1976): Giemsa and fluorochrome banding of polytene chromosomes in Phaseolus vulgaris and P. coccineus. In: K. Jones, P.E. Brandham (eds.), Current Chromosome Research. Amsterdam: Elsevier/North-Holland Biomedical Press, pp. 51–56.Google Scholar
  75. Schweizer, D. (1977): R-banding produced by DNase I digestion of chromomycin-stained chromosomes. Chromosoma 64: 117–124.PubMedCrossRefGoogle Scholar
  76. Shankland, N.E., Grant, W.F. (1976): Localization of Giemsa bands in Lotus pedunculatus chromosomes. Can. J. Genet. Cytol. 18: 239–244.Google Scholar
  77. Sharma, A.K., Sharma, A. (1972): Chromosome Techniques: Theory and Practice. Baltimore: University Park Press.Google Scholar
  78. Shelby, M.D. (1976): Chemical Mutagenesis in Plants and Mutagenicity of Plant-related Compounds. Oak Ridge National Laboratory, ORNL/EMIC-7 327 pp.Google Scholar
  79. Singh, R.J., Röbbelen, G. (1976): Giemsa banding technique reveals deletions within rye chromosomes in addition lines. Z. Pflanzenzüchtg. 76: 11–18.Google Scholar
  80. Smith, H.H., Lotfy, T.A. (1954): Comparative effects of certain chemicals on Tradescantia chromosomes as observed at pollen tube mitosis. Am. J. Bot. 41: 589–593.CrossRefGoogle Scholar
  81. Sparrow, A.H., Schairer, L.A., Marimuth, K.M. (1968): Genetic and cytologic studies of Tradescantia irradiated during orbital flight. Bioscience 18: 585–590.CrossRefGoogle Scholar
  82. Spasojevic, V. (1975): Cytogenetical effect of Tuberite on Zea mays. Arkiv. Poljopr. Nanke 28: 119–125.Google Scholar
  83. Stack, S.M., Clarke, C.R., Cary, W.E., Muffly, J.T. (1974): Different kinds of heterochromatin in higher plant chromosomes. Cell Sci. 14: 499–504.Google Scholar
  84. Takehisa, S., Utsumi, S. (1973): Heterochromatin and Giemsa banding of metaphase chromosomes in Trillium kamtschaticum Pallas. Nature (Lond.) 244: 286–287.Google Scholar
  85. Taylor, J.H., Woods, P.S., Hughes, W.L. (1957): The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium-labeled thymidine. Proc. Natl. Acad. Sci. USA 43: 515–529.CrossRefGoogle Scholar
  86. Tomkins, D.J., Grant, W.F. (1972): Comparative cytological effects of the pesticides mena- zon, metrobromuron and tetra-chloroisophthalonitrile in Hordeum and Tradescantia. Can. J. Genet. Cytol. 14: 245–256.Google Scholar
  87. Tomkins, D.J., Grant, W.F. (1976): Monitoring natural vegetation for herbicide-induced chromosomal aberrations. Mutat. Res. 36: 73–84.CrossRefGoogle Scholar
  88. Underbrink, A.G., Schairer, L.A., Sparrow, A.H. (1973): Tradescantia stamen hairs: A radiobiological test system applicable to chemical mutagenesis. In: A. Hollaender (ed.), Chemical Mutagens: Principles and Methods for their Detection, Vol. 3. New York: Plenum Press, pp. 171–207.Google Scholar
  89. Vig, B.K. (1973): Somatic crossing over in Glycine max (L.) Merrill: Mutagenicity of sodium azide and lack of synergistic effect with caffeine and mitomycin C. Genetics 75: 265–277.PubMedGoogle Scholar
  90. Vig, B.K. (1975): Soybean (Glycine max): A new test system for study of genetic parameters as affected by environmental mutagens. Mutat. Res. 31: 49–56.Google Scholar
  91. Vig, B.K. (1978): Somatic mosaicism in plants with special reference to somatic crossing over. Environ. Health Perspect. 27: 27–36.PubMedCrossRefGoogle Scholar
  92. Vosa, C.G. (1977): Heterochromatic patterns and species relationship. Nucleus 20:33–41.Google Scholar
  93. White, O.E. (1948): Fascia1tion. Bot. Rev. 14:319–358.CrossRefGoogle Scholar
  94. Wolff, S., Bodycote, J., Painter, R.B. (1974): Sister chromatid exchanges induced in Chinese hamster cells by UV irradiation of different stages of the cell cycle: The necessity for cells pass through S. Mutat. Res. 25: 73–81.PubMedCrossRefGoogle Scholar
  95. Wolverton, B.C., McDonald, R.C. (1978): Bioaccumulation and detection of trace levels of cadmium in aquatic systems by Eichhornia crassipes. Environ. Health Perspect. 27: 161–164.PubMedCrossRefGoogle Scholar
  96. Wuu, K.D., Grant, W.F. (1966): Morphological and somatic chromosomal aberrations induced by pesticides in barley. Can. J. Genet. Cytol. 8: 481–501.Google Scholar
  97. Wuu, K.D., Grant, W.F. (1967): Chromosomal aberrations induced by pesticides in meiotic cells of barley. Cytologia 32: 31–41.Google Scholar
  98. Yen, S.-T., Filion, W.G. (1977): Differential Giemsa staining in plants. V. Two types of constitutive heterochromatin in species of A vena. Can. J. Genet. Cytol. 19: 739–743.Google Scholar
  99. Zura, K.D., Grant, W.F. (1980): Manuscript in preparation.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • William F. Grant
  • A. E. Zinov’eva-Stahevitch
  • K. D. Zura

There are no affiliations available

Personalised recommendations