Skip to main content

Reactivity of Chelated Copper with Superoxide

  • Chapter
Inflammatory Diseases and Copper

Part of the book series: Experimental Biology and Medicine ((EBAM,volume 2))

Abstract

Superoxide dismutative copper is found widely distributed in biochemical systems (1). Only small activation energies, below 10 kJ/mol (2), are required as a result of the reactivity of the superoxide radical itself. Thus the molecular size of the employed copper complex is of minor importance. As expected, some low molecular weight copper chelates were found to exert greater superoxide dismutative activities than the enzyme Cu2Zn2 superoxide dismutase (3). In the following, more or less arbitrary complexes of both amino acids and some peptides are compared regarding their ability to catalyze superoxide dismutation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U.Weser and L.M.Schubotz in ‘Trace Elements in the Pathogenesis and Treatment of Inflammatory Conditions’, K.D.Rainsford,Ed., Agents and Actions Supplement, Birkhauser Verlag, Basel, 1981, p.103–120.

    Google Scholar 

  2. J.A.Fee and J.S.Valentine In ‘Superoxide and Superoxide Dismutases”, A.M.Michelson, J.M.McCord and I.Fridovich, Eds., Acad.Press London, New York and San Francisco, p.19–60.

    Google Scholar 

  3. U.Weser, K.-H.Sellinger, E.Lengfelder, W.Werner and J.Strahle, Biochim.Biophys.Acta, 631, 232 (1980).

    PubMed  CAS  Google Scholar 

  4. J.S.Richardson, K.A.Thomas, B.H.Rubin and D.C.Richardson, Proc.Natl.Acad.Sci.USA, 72, 1349 (1975).

    Article  PubMed  CAS  Google Scholar 

  5. J.M.McCord and I.Fridovich, J.Biol. Chem., 244, 6049 (1968).

    Google Scholar 

  6. T.Mann and D.Keilin, Proc.Roy.Soc.Ser.B., 126, 303 (1938).

    Article  CAS  Google Scholar 

  7. K.E.Joester, G.Jung, U.Weber and U.Weser, FEBS-Letters, 25, 25 (1976).

    Article  Google Scholar 

  8. J.Weinstein and H.J.Bielsky, J.Am.Chem.Soc., 102,U9l6 (1980).

    Google Scholar 

  9. Ph.Robertson Jr. and I.Fridovich, Arch.Biochem.Biophys., 203, 830 (1980).

    Article  PubMed  CAS  Google Scholar 

  10. R.Brigelius, H.-J.Hartmann, W.Bors, M.Saran, E.Lengfelder and U.Weser, Z.Physiol.Chem., 356, 739 (1975).

    Article  CAS  Google Scholar 

  11. D.Klug-Roth and J.Rabani, J.Phys.Chem., 80, 588 (1976).

    Google Scholar 

  12. T.Fawcett, E.E.Bernarducci, K.Krogh-Jespersen and H.J. Schugar, J.Am.Chem.Soc., 102, 2598 (1980)

    Google Scholar 

  13. U.Weser,E.Bunnenberg, R.Cammack, C.Djerassi, L.Flohe, G.Thomas and W.Voelter, Biochim.Biophys.Acta, 243, 203 (1971).

    Google Scholar 

  14. L.Morpurgo, A.Finazzi-Agró, G.Rotilio and B.Mondovi, Biochim.Biophys.Acta, 271, 292 (1972).

    Google Scholar 

  15. E.Lengfelder, C.Fuchs, M.Younes and U.Weser, Biochim. Biophys.Acta, 567, 492 (1979).

    Google Scholar 

  16. Y.Qyanagui, Biochem.Pharmacol., 19, 135 (1976).

    Google Scholar 

  17. W.R.Walker and S.J. Beveridge, Inorg.Persp.Biol.Med., 2, 93 (1979).

    Google Scholar 

  18. J.R.J.Sorenson in ‘Copper in the Environment Part II: Health Effects1, J.0.Nriagu,Ed., John Wiley&Sons,New York, Chichester, Brisbane, Toronto, 1979, p.8U-l62.

    Google Scholar 

  19. E.J.Underwood in ‘Trace Elements in Human&Animal Nutrition’ 3rd edition,Acad.Press New York, 1971, p.57.

    Google Scholar 

  20. K.D.Rainsford and M.W.Whitehouse, Experientia 32, 1172, (1976).

    Google Scholar 

  21. P.J.M.W.L.Birker and H.C.Freeman, J.Chem.Soc.Chem.Comm., 72, 223 (1976).

    Google Scholar 

  22. P.J.M.W.L.Birker and H.C.Freeman, J.Am.Chem.Soc., 99, 6890 (1977).

    Article  PubMed  CAS  Google Scholar 

  23. R.A.Weisiger and I.Fridovich, J.Biol.Chem., 248, 3582 (1973).

    PubMed  CAS  Google Scholar 

  24. J.R.Wright and E.Frieden, Bioinorganic Chemistry, 4, 163 (1975).

    Article  PubMed  CAS  Google Scholar 

  25. I.Fridovich in ‘Oxygen Free Radicals and Tissue Damage’; CIBA-Foundation Symposium 65 (new series);Excerpta Medica, Amsterdam, Oxford, New York;1979,p.77.

    Google Scholar 

  26. H,Ohmori, K.Komoriya, A.Azuma, Y.Hasliumoto and S.Kurozumi, Biochem,Pharmacol., 27, 1397 (1979).

    Article  Google Scholar 

  27. I.Fridovich in ‘Advances in Inorganic Biochem’ G.L. Eichhorn and L.G.Marzilli, Eds., Elsevier, North-Holland, New York, 1979, p.67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 The Humana Press Inc.

About this chapter

Cite this chapter

Weser, U., Lengfelder, E., Sellinger, KH., Schobotz, L. (1982). Reactivity of Chelated Copper with Superoxide. In: Sorenson, J.R.J. (eds) Inflammatory Diseases and Copper. Experimental Biology and Medicine, vol 2. Humana Press. https://doi.org/10.1007/978-1-4612-5829-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5829-2_46

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-5831-5

  • Online ISBN: 978-1-4612-5829-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics