Skip to main content

Functional Organization of the Auditory Cortex

Representation Beyond Tonotopy in the Bat

  • Chapter
Book cover Cortical Sensory Organization

Part of the book series: Cortical Sensory Organization ((CSO,volume 3))

Abstract

The properties of an acoustic signal produced by an animal can be studied by examining the output of a microphone displayed on the screen of an oscilloscope. Such an examination, however, gives us only limited information about the signal properties, so that the signal is usually analyzed with a spectrum analyzer. The spectrum analyzer has many filters tuned to different frequencies and it expresses the output of each as a function of time. Therefore, the properties of the acoustic signals are expressed by a pattern that appears in three coordinates: frequency, amplitude and time. To recognize individual acoustic patterns with an instrument, information-bearing elements (elements characterizing the signal) are first extracted and then their combinations are examined. The question next arises: how are acoustic signals analyzed and processed in the auditory system?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Capranica, R. R. Vocal responses of the bullfrog to natural and synthetic mating calls. J. Acoust. Soc. Amer., 40: 1131–1139, 1966.

    Article  Google Scholar 

  2. Feng, A. S., Simmons, J. A., and Kick, S. A. Echo detection and target-ranging neurons in the auditory system of the bat Eptesicus fuscus. Science, 202: 645–648, 1978.

    Article  PubMed  CAS  Google Scholar 

  3. Fenton, M. B. Variation in the social calls of little brown bats (Myotis lucijicus). Canadian J. Zool, 55: 1151–1157, 1977.

    Article  Google Scholar 

  4. Fenton, M. B. Adaptiveness and ecology of echolocation in terrestrial (aerial) systems. In: Biosonar Systems, edited by R. G. Busnel, and J. F. Fish, New York: Plenum, 1980, pp. 427–446.

    Google Scholar 

  5. Friend, J. H. Suga, N., and Suthers, R. A. Neural responses in the inferior colliculus of echolocating bats to artificial orientation sounds and echoes. J. Cell Physiol., 67: 319–332, 1966.

    Article  PubMed  CAS  Google Scholar 

  6. Frishkopf, L. S., and Goldstein, M. H., JR. Responses to acoustic stimuli from single units in the eighth nerve of the bullfrog. J. Acoust. Soc.Amer., 35: 1219–1228, 1963.

    Article  Google Scholar 

  7. Goldman, L. J., and Henson, O. W., JR. Prey recognition and selection by the constant frequency bat, Pteronotus p. parnellii. Behav. Ecol. Sociobiol, 2: 411–419, 1977.

    Article  Google Scholar 

  8. Grinnell, A. D. The neurophysiology of audition in bats: intensity and frequency parameters. J. Physiol, London, 167: 38–66, 1963.

    CAS  Google Scholar 

  9. Grinnell, A. D. The neurophysiology of audition in bats: temporal parameters. J. Physiol, London, 167: 67–96, 1963.

    CAS  Google Scholar 

  10. Grinnell, A. D. Comparative auditory neurophysiology of neotropical bats employing different echolocation signals. Z. vergl Physiol, 68: 117–153, 1970.

    Article  Google Scholar 

  11. Grinnell, A. D. and Griffen, D. R. The sensitivity of echolocation in bats. Biol Bull, Woods Hole., 114: 10–22, 1958.

    Article  Google Scholar 

  12. Henson, O. W. JR. The activity and function of the middle ear muscles in echolocating bats. J. Physiol, London, 180: 871–887, 1965.

    Google Scholar 

  13. Katsuki, Y., Watanabe, T., and Suga, N. Interaction of auditory neurons in response to two sound stimuli in cat. J. Neurophysiol, 22: 603–623, 1959.

    PubMed  CAS  Google Scholar 

  14. Knudsen, E. I., and Konishi, M. Space and frequency are represented separately in auditory midbrain of the owl. J. Neurophysiol, 41: 870–884, 1978.

    PubMed  CAS  Google Scholar 

  15. Manabe, T., Suga, N., and Ostwald, J. Aural representation in the Doppler-shifted CF processing area of the primary auditory cortex of the mustache bat. Science, 200: 339–342, 1978.

    Article  PubMed  CAS  Google Scholar 

  16. Mountcastle, V. B. Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J. Neurophysiol, 20: 408–434, 1957.

    PubMed  CAS  Google Scholar 

  17. Mudry, K. M., Constantin-Paton, M., and Capranica, R. R. Auditory sensitivity of the diencephalon of the leopard frog Rana p. pipiens. J. Comp. Physiol, 114: 1–13, 1977.

    Article  Google Scholar 

  18. Novick, A., and Vaisnys, J. R. Echolocation of flying insects by the bat, Chilonycteris parnellii. Biol Bull, 127: 478–488, 1964.

    Google Scholar 

  19. O’neill, W. E., and Suga, N. Target range-sensitive neurons in the auditory cortex of the mustache bat. Science, 203: 69–73, 1979.

    Article  PubMed  Google Scholar 

  20. Schnitzler, H.-U. Echoortung bei der Fledermaus Chilonycteris rubiginosa. Z. vergl Physiol, 68: 25–38, 1970.

    Article  Google Scholar 

  21. Schuller, G. The role of overlap of echo with outgoing echolocating sound in the bat Rhinolophus Jerrumequinum. Naturwissenchqften., 61: 171–172, 1974.

    Article  Google Scholar 

  22. Simmons, J. A. The sonar receiver of the bat. Ann. NY Acad. Sci., 188: 161–174, 1971.

    Article  PubMed  CAS  Google Scholar 

  23. Simmons, J. A. Perception of echo phase information in bat sonar. Science, 204: 1336–1338, 1979.

    Article  PubMed  CAS  Google Scholar 

  24. Simmons, J. A., Howell, D. J. and Suga, N. The information content of bat sonar echoes. Amer. Scient., 63: 204–215, 1975.

    CAS  Google Scholar 

  25. Simmons, J. A., and O’farrell, M. J. Echolocation by the long-eared bat, Plecotus phyllotis. J. Comp. Physiol., 122: 201–214, 1977.

    Article  Google Scholar 

  26. Suga, N. Analysis of frequency modulated sounds by auditory neurones of echolocating bats. J. Physiol., London, 179: 26–53, 1965.

    CAS  Google Scholar 

  27. Suga, N. Functional properties of auditory neurones in the cortex of echolocating bats. J. Physiol., London, 181: 671–700, 1965.

    CAS  Google Scholar 

  28. Suga, N. Analysis of frequency-modulated and complex sounds by single auditory neurones of bats. J. Physiol., London, 198: 51–80, 1968.

    CAS  Google Scholar 

  29. Suga, N. Classification of inferior collicular neurones of bats in terms of responses to pure tones, FM sounds, and noise bursts. J. Physiol., London, 200: 555–574, 1969.

    CAS  Google Scholar 

  30. Suga, N. Feature extraction in the auditory system of bats. In: Basic Mechanisms in Hearing, edited by A. R. Møller. New York: Acad. Press, 1973, pp. 675–744.

    Google Scholar 

  31. Suga, N. Amplitude-spectrum representation in the Doppler-shifted-CF processing area of the auditory cortex of the mustache bat. Science, 196: 64–67, 1977.

    Article  PubMed  CAS  Google Scholar 

  32. Suga, N. Specialization of the auditory system for reception and processing species-specific sounds. Fed. Proc., 37: 2342–2354, 1978.

    PubMed  CAS  Google Scholar 

  33. Suga, N. Representation of auditory information by the brain(I). Shizen, Chuokoron-sha, Tokyo, Japan, 79–5: 26–41, 1979 (in Japanese).

    Google Scholar 

  34. Suga, N. Representation of auditory information by the brain(II). Shizen, Chuokoron-sha, Tokyo, Japan, 79–6: 70–81, 1979 (in Japanese).

    Google Scholar 

  35. Suga, N., and Jen, P. H.-S. Peripheral control of acoustic signals in the auditory system of echolocating bats. J. Exptl. Biol, 62: 277–311, 1975.

    CAS  Google Scholar 

  36. Suga, N., and Jen, P. H.-S. Disproportionate tonotopic representation for processing species-specific CF-FM sonar signals in the mustache bat auditory cortex. Science, 194: 542–544, 1976.

    Article  PubMed  CAS  Google Scholar 

  37. Suga, N., and Jen, P. H.-S. Further studies on the peripheral auditory system of “CF-FM” bats specialized for the fine frequency analysis of Doppler-shifted echoes. J. Exptl. Biol, 69: 207–232, 1977.

    CAS  Google Scholar 

  38. Suga, N., and Manabe, T. Neural basis of amplitude-spectrum rep-resentation in the auditory cortex of the mustached bat. J. Neurophysiol. (in press).

    Google Scholar 

  39. Suga, N., and O’neill, W. E. Neural axis representing target range in the auditory cortex of the mustached bat. Science, 206: 351–353, 1979.

    Article  PubMed  CAS  Google Scholar 

  40. Suga, N., and O’neill, W. E. Auditory processing of echoes: representation of acoustic information about the environment in the brain of a bat. In: Biosonar Systems, edited by R. G. Busnel and J. F. Fish. New York: Plenum, 589–611, 1980.

    Google Scholar 

  41. Suga, N., O’neill, W. E., and Manabe, T. Cortical neurons sensitive to particular combinations of information bearing elements of biosonar signals in the mustached bat. Science, 200: 778–781, 1978.

    Article  PubMed  CAS  Google Scholar 

  42. Suga, N., O’neill, W. E., and Manabe, T. Harmonic-sensitive neurons in the auditory cortex of the mustached bat. Science, 203: 270–274, 1979.

    Article  PubMed  CAS  Google Scholar 

  43. Suga, N., and Schlegel, P. Neural attenuation of responses to emitted sounds in echolocating bats. Science, 177: 82–84, 1972.

    Article  PubMed  CAS  Google Scholar 

  44. Suga, N., and Schlegel, P. Coding and processing in the auditory systems of FM-signal-producing bats. J. Acoust. Soc. Amer., 54: 174–190, 1973.

    Article  CAS  Google Scholar 

  45. Suga, N., Schlegel, P., Schimozawa, T., and Simmons, J. A. Orientation sounds evoked from echolocating bats by electrical stimulation of the brain. J. Acoust. Soc. Amer., 54: 793–797, 1973.

    Article  CAS  Google Scholar 

  46. Suga, N., and Shimozawa, T. Site of neural attenuation of responses to self-vocalized sounds in echolocating bats. Science, 183: 1211–1213, 1974.

    Article  PubMed  CAS  Google Scholar 

  47. Suga, N., Simmons, J. A., and Jen, P. H.-S. Peripheral specialization for fine analysis of Doppler-shifted echoes in “CF-FM” bat Pteronotus parnellii. J. Exptl. Biol., 63: 161–192, 1975.

    CAS  Google Scholar 

  48. Tunturi, A. R. A difference in the representation of auditory signals for the left and right ears in the iso-frequency contours of the right middle ectosylvian auditory cortex of the dog. Amer. J. Physiol, 168: 712–727, 1952.

    PubMed  CAS  Google Scholar 

  49. Woolsey, C. N., and Walzl, E. M. Topical projection of nerve fibers from local regions of the cochlea to the cerebral cortex of the cat. Amer. J. Physiol, 133, 498–499, 1941.

    Google Scholar 

  50. Brugge, J. F., and Merzenich, M. M. Patterns of activity of the auditory cortex. In Basic Mechanisms in Hearing, edited by A. R. Møller. New York: Academic Press, 1973. pp. 745–766.

    Google Scholar 

  51. Merzenich, M. M., Knight, P. L., and Roth, G. L. Representation of cochlea within primary auditory cortex in the cat. J. Neurophysiol., 38: 231–249, 1975.

    PubMed  CAS  Google Scholar 

  52. Rose, J. E., Gross, N., Geisler, C. D., and Hind, J. E. Some neural mechanisms in the inferior colliculus of the cat which maybe relevant to localization of a sound source. J. Neurophysiol., 29: 288–314, 1966.

    PubMed  CAS  Google Scholar 

  53. Suga, N. Cortical representation of biosonar information in the mustached bat. In Sensory Function, Adv. Physiol. Sci. vol. 16, edited by E. Grastyan and P. Molnar, New York: Pergamon, 1981, 119–125.

    Google Scholar 

  54. Suga, N., Kujirari, K., and O’neill, W. E. How biosonar information is represented by the bat’s cerebrum. In Neuronal Mechanisms of Hearing, edited by J. Syka and L. Aitkin. New York: Plenum, 197–219. 1981.

    Google Scholar 

  55. Wever, E. G., Theory of Hearing. New York: Wiley, 1949.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 The HUMANA Press Inc.

About this chapter

Cite this chapter

Suga, N. (1982). Functional Organization of the Auditory Cortex. In: Woolsey, C.N. (eds) Cortical Sensory Organization. Cortical Sensory Organization, vol 3. Humana Press. https://doi.org/10.1007/978-1-4612-5817-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5817-9_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-5819-3

  • Online ISBN: 978-1-4612-5817-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics