Skip to main content

From Flux Quantization to Magnetic Monopoles

  • Chapter
Third Workshop on Grand Unification

Part of the book series: Progress in Physics ((PMP,volume 6))

  • 167 Accesses

Abstract

Superconductive technologies developed over the last decade now allow detailed observation of flux quantization in five centimeter diameter rings. The theoretical similarities between flux quantization and Dirac magnetic charges make superconductive systems natural detectors for these elusive particles. Recent work on Grand Unification theories, the topic of this workshop, strongly suggests the existence of stable supermassive magnetically charged particles. These particles would be nonrelativistic, weakly ionizing, and very penetrating; and thus may have eluded previous searches. A new superconductive detector designed to look for an extraterrestrial flux of such particles has been operating for more than six months and the first results include a single event. It is consistent in magnitude with the passage of a particle possessing a single Dirac unit of magnetic charge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Cabrera, Ph.D. Thesis, Stanford University, 1975

    Google Scholar 

  2. B. Cabrera and F. van Kann, Acta Astronautica 5, 125 (1978).

    Article  Google Scholar 

  3. C.W.F. Everitt, Experimental Gravitation, ed. B. Bertotti (Academic Press, New York, 1973), p. 331

    Google Scholar 

  4. J. A. Lipa, Proceedings of the International School of General Relativity Effects in a Physics and Astrophysics: Experiments and Theory (3rd Course), 1977, p. 129.

    Google Scholar 

  5. M. A. Taber, Ph.D. Thesis, Stanford University, 1978

    Google Scholar 

  6. M. A. Taber, J. Physique C6, 192 (1978).

    Google Scholar 

  7. B. Cabrera and G. J. Siddall, Precision Engineering, 3, 125 (1981)

    Article  Google Scholar 

  8. B. Cabrera, S. Felch and J. T. Anderson, Physica 107B, 19 (1981)

    Google Scholar 

  9. B. Cabrera, H. Gutfreund and W. A. Little, Phys. Rev. Bl, June (1982).

    Google Scholar 

  10. L. P. Gorkov, Sov. Phys. -JETP 9, 1364 (1959).

    MathSciNet  Google Scholar 

  11. See for example: A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, San Francisco, 1971), Chap. 13.

    Google Scholar 

  12. B. S. Deaver and W. M. Fairbank, Phys. Rev. Lett. 7, 43 (1961)

    Article  ADS  Google Scholar 

  13. R. Doll and M. Nabauer, ibid. 7, 51 (1961).

    Article  ADS  Google Scholar 

  14. For review see: P. Goddard and D. I. Olive, Rep. Prog. Phys. 41, 1357 (1978).

    Article  ADS  Google Scholar 

  15. P. A. M. Dirac, Proc. Roy. Soc., A133, 60 (1931)

    ADS  Google Scholar 

  16. P. A. M. Dirac, Phys. Rev., 74, 817 (1948).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. A. S. Goldhaber and J. Smith, Rep. Prog. Phys. 38, 731 (1975).

    Article  ADS  Google Scholar 

  18. G. ‘t Hooft, Nucl. Phys. 79B, 276 (1974) and Nucl. Phys. 105B, 538 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  19. A. M. Polyakov, JETP Letts. 20, 194 (1974).

    ADS  Google Scholar 

  20. J. P. Preskill, Phys. Rev. Lett. 19, 1365 (1979)

    Article  ADS  Google Scholar 

  21. G. Lazarides, Q. Shafi and T. F. Walsh, Phys. Lett. 100B, 21 (1981).

    ADS  Google Scholar 

  22. L. W. Alvarez, Lawrence Radiation Laboratory Physics Note 470, 1963 (unpublished)

    Google Scholar 

  23. P. Eberhard, Lawrence Radiation Laboratory Physics Note 506, 1964 (unpublished)

    Google Scholar 

  24. L. J. Tassie, Nuovo Cimento 38, 1935 (1965)

    Article  Google Scholar 

  25. L. Vant-Hull, Phys. Rev. 173, 1412 (1968)

    Article  ADS  Google Scholar 

  26. P. Eberhard, D. Ross, L. Alvarez and R. Watt, Phys. Rev. D4, 3260 (1971)

    ADS  Google Scholar 

  27. B. Cabrera, Phys. Rev. Lett. 48, 1378 (1982).

    Article  ADS  Google Scholar 

  28. Model BMS SQUID system, manufactured by S.H.E. Corp., San Diego, California; for theory see: J. Clarke, Proc. of the IEEE, 61, 8 (1973).

    Google Scholar 

  29. B. Cabrera, Proceedings LT14, 4., 270 (1975)

    Google Scholar 

  30. B. Cabrera, AIP Conference Series, 44, 73 (1978).

    Article  ADS  Google Scholar 

  31. G. S. LaRue, W. M. Fairbank, and A. F. Hebard, Phys. Rev. Lett. 38, 1011 (1977)

    Article  ADS  Google Scholar 

  32. G. S. LaRue, W. M. Fairbank, and J. D. Phillips, Phys. Rev. Lett. 42, 142, 1019 (E) (1979)

    ADS  Google Scholar 

  33. G. S. LaRue, J. D. Phillips, and W. M. Fairbank, Phys. Rev. Lett. 46, 967 (1981).

    Article  ADS  Google Scholar 

  34. Schwinger, Phys. Rev. 173, 1536 (1968).

    Article  ADS  Google Scholar 

  35. For review see: S. M. Faber and J. S. Gallagher, Ann. Rev. Astron. Astrophys. 17, 135 (1979).

    Article  ADS  Google Scholar 

  36. M. S. Turner, E. N. Parker and T. J. Boydan, Enrico Fermi Institute Preprint No. 82–18.

    Google Scholar 

  37. S. Dimopoulos, S. L. Glashow, E. M. Purcell and F. Wilczek, Harvard University Theoretical Physics, Preprint No. A 016.

    Google Scholar 

  38. S. Geer and W. G. Scott, Cern p̅p note 69; K, Hayashi, to be published; S. P. Ahlen and K. Kinoshita, to be published.

    Google Scholar 

  39. MODEL 7701–100 Accelerometer, Endevco Corp., San Juan Capistrano, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cabrera, B. (1982). From Flux Quantization to Magnetic Monopoles. In: Frampton, P.H., Glashow, S.L., van Dam, H. (eds) Third Workshop on Grand Unification. Progress in Physics, vol 6. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-5800-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5800-1_11

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3105-5

  • Online ISBN: 978-1-4612-5800-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics