Skip to main content

Computation of Multicomponent Phase Equilibria

  • Chapter
Advances in Physical Geochemistry

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 2))

Abstract

With the publication of thermodynamic data by Helgeson et al. (1978) and Robie et al. (1978), we have data on the Gibbs free energy of formation of many geologically important substances. It is, therefore, appropriate to consider suitable techniques of calculating multicomponent phase equilibria. Geochemists and petrologists are familiar with the method of equilibrium constants used in the calculation of equilibrium pressure and temperature for single or multiple reactions. This is the method which, for example, has been used by Helgeson et al. in deriving the free-energy data on many minerals. Once there is an accumulation of a sizable amount of such data, the method of minimization of total Gibbs free energy as described here may be used advantageously to calculate equilibrium assemblages. With this method, it is not necessary to write down any specific reactions and little chemical intuition or experience is needed to predict the course of complex equilibria. This method, although used by some geochemists (e.g., Grossman, 1972) in nebular condensation calculations, has not been given due attention by petrologists (but see Brown and Skinner (1974) and Nicholls (1977) for alternative methods).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atlas, L. (1965) The polymorphism of MgSiO3 and solid state equilibria in the system MgSiO3-CaMgSi2O6, J. Geology 60, 125–147.

    Article  Google Scholar 

  • Bohlen, S. R., Essene, E. J. and Boettcher, A. L. (1980) Reinvestigation and application of olivine-quartz-orthopyroxene barometry, Earth Planet. Sci. Lett 41, 1–10.

    Article  Google Scholar 

  • Boyd, F. R., and England, J. L. (1965) The rhombic enstatite-clinoenstatite inversion, Carnegie Inst. Washington Yearbook 64, 117–120.

    Google Scholar 

  • Boyd, F. R., England, J. L., and Davis, (1964) The effect of pressure on the melting and polymorphism of enstatite, MgSiO3, J. Geophys. Res. 69, 2101–2109.

    Article  Google Scholar 

  • Brown, T. H., and Skinner, B. J. (1974) Theoretical prediction of equilibrium phase assemblages in multicomponent systems, Amer. J. Sci. 274, 961–986.

    Article  Google Scholar 

  • Charlu, T. V., Newton, R. C, and Kleppa, O. J. (1975) Enthalpies of formation at 970°K of compounds in the system MgO-Al2O3-SiO2 from high temperature solution calorimetry, Geochim. Cosmochim. Acta 39, 1487–1497.

    Article  Google Scholar 

  • Danckwerth, P. A., and Newton, R. (1978) Experimental determination of the spinel peridotite to garnet peridotite reaction in the system MgO-Al2O3-SiO2 in the range 900–1100 and A12O3 isopleths of enstatite in the spinel field, Contrib. Mineral. Petrol 66, 189–201.

    Article  Google Scholar 

  • Eriksson, G. (1976) Quantitative equilibrium calculations in multiphase systems at high temperatures with special reference to the roasting of chalcopyrite (CuFeS2), Akedemisk Avhandling, Umea University, Sweden.

    Google Scholar 

  • Eriksson, G., and Rosen, E. (1973) Thermodynamic studies of high temperature equilibria, Chem. Scr. 4, 193–194.

    Google Scholar 

  • Fabries, J. (1979) Spinel-olivine geothermometry in peridotites from ultramafic complexes, Contrib. Mineral. Petrol. 69, 329–336.

    Article  Google Scholar 

  • Ganguly, J., and Ghose, S. (1979) Aluminous orthopyroxene: order-disorder, thermodynamic properties, and petrologic implications, Contrib. Mineral Petrol 69, 375–382.

    Article  Google Scholar 

  • Grew, E. S. (1980) Sapphirine + quartz association from Archean rocks in Enderby Land, Antarctica, Amer. Mineral. 65, 821–836.

    Google Scholar 

  • Grossman, L. (1972) Condensation in the primitive solar nebula, Geochim. Cosmochim. Acta 36, 109–128.

    Article  Google Scholar 

  • Guggenheim, E. A. (1967) Thermodynamics. North-Holland, Amsterdam.

    Google Scholar 

  • Haselton, H. T., Jr., and Westrum, E. F., Jr. (1980) Low temperature heat capacities of synthetic pyrope, grossular, and pyrope60, grossular40, Geochim. Cosmochim. Acta 44, 701–709.

    Article  Google Scholar 

  • Helgeson, H. C, Delany, J. M., Nesbitt, H. W., and Bird, D. K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals, Amer. J. Sci. 278A, 1–250.

    Google Scholar 

  • Holloway, J. R. (1977) Fugacity and activity of molecular species in supercritical fluids, in Thermodynamics in Geology, edited by D. G. Fraser, pp. 161–181, Reidel, Dordrecht, The Netherlands.

    Google Scholar 

  • Kerrick, D. M., and Jacobs, G. K. (1982) A modified Redlich-Kwong equation for H2O, CO2, and H2O-CO2 mixtures at elevated pressures and temperatures, Amer. J. Sci. 231–290.

    Google Scholar 

  • Kitayama, K., and Katsura, T. (1968) Activity measurements in orthosilicate and metasilicate solid solutions. I. Mg2SiO4-Fe2SiO4 and MgSiO3-FeSiO3 at 1204 C, Chem. Soc. Japan J. 41, 1146–1151.

    Article  Google Scholar 

  • Kretz, R. (1964) Analysis of equilibrium in garnet-biotite-sillimanite gneisses from Quebec, J. Petrology 5, 1–20.

    Google Scholar 

  • Lane, D. L., and Ganguly, J. (1980) A12O3 solubility in orthopyroxene in the system MgO-Al2O3-SiO2: A réévaluation and mantle geotherm, J. Geophys. Res. 85, 6963–6972.

    Article  Google Scholar 

  • Larimer, J. W. (1968) Experimental studies on the system Fe-MgO-SiO2-O2 and their bearing in the petrology of chondritic meteorites, Geochim. Cosmochim. Acta 32, 1187–1207.

    Article  Google Scholar 

  • Lowenstein, W. (1953) The distribution of aluminum in the tetrahedra of silicates, Amer. Mineral. 38, 92–96.

    Google Scholar 

  • Matsui, Y., and Nishizawa, O. (1974) Iron(II)-magnesium exchange equilibrium between olivine and calcium-free pyroxene over a temperature range 800°to 1300°C, Bull. Soc. Fr. Mineral. Cristallogr. 97, 122–130.

    Google Scholar 

  • Medaris, L. G., Jr. (1972) Partitioning of Fe and Mg between coexisting synthetic olivine and orthopyroxene, Amer. J. Sci. 267, 945–968.

    Article  Google Scholar 

  • Mueller, R. F. (1972) Stability of biotite: A discussion, Amer. Mineral. 57, 300–316.

    Google Scholar 

  • Nafziger, R. H., and Muan, A. (1967) Equilibrium phase compositions and thermodynamic properties of olivine and pyroxenes in the system MgO-FeO-SiO2, Amer. Mineral. 52, 1364–1385.

    Google Scholar 

  • Nicholls, J. (1977) The calculation of mineral compositions and modes of olivine-two pyroxene-spinel assemblages, Contrib. Mineral. Petrol. 60, 119–142.

    Article  Google Scholar 

  • Perkins, D., Holland, T. J. and Newton, R. (1981) The A12O3 contents of enstatite in equilibrium with garnet in the system MgO-Al2O3-SiO2 at 15–40 kbar and 900–1600°C, Contrib. Mineral. Petrol. 76, 530–541.

    Google Scholar 

  • Robie, R., Hemingway, B. S., and Fisher, J. R. (1978) Thermodynamic properties of minerals and related substances at 298°K and 1 bar (10 pascals) pressure and at higher temperatures, U. S. Geol. Survey Bull 1452 (1978).

    Google Scholar 

  • Sack, R. (1980) Some constraints on the thermodynamic mixing properties of Fe-Mg orthopyroxenes and olivines, Contrib. Mineral. Petrol. 71, 257–269.

    Article  Google Scholar 

  • Saxena, S. K. (1973) Thermodynamics of Rock-Forming Crystalline Solutions, Springer-Verlag, New York.

    Google Scholar 

  • Saxena, S. K. (1981) The MgO-Al2O3-SiO2 System: Free energy of pyrope and Al2O3-enstatite, Geochim. Cosmochim. Acta.

    Google Scholar 

  • Van Zeggeren, F. and Storey, S. H. (1970) The Computation of Chemical Equilibria, Cambridge University Press, New York.

    Google Scholar 

  • White, W. Johnson, S. M. and Dantzig, G. B. (1958) Chemical equilibrium in complex mixtures, J. Chem. Phys. 28, 751–755.

    Article  Google Scholar 

  • Williams, R. J. (1971) Reaction constants in the system Fe-MgO-SiO2-O2 at 1 atm between 900°C and 1300°C: Experimental result, Amer. J. Sci. 270, 334–360.

    Article  Google Scholar 

  • Wood, B. J. and Kleppa, O. J. (1981) Thermochemistry of forsterite-fayalite olivine solutions, Geochim. Cosmochim. Acta 45, 529–534.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Saxena, S.K. (1982). Computation of Multicomponent Phase Equilibria. In: Saxena, S.K. (eds) Advances in Physical Geochemistry. Advances in Physical Geochemistry, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5683-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5683-0_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5685-4

  • Online ISBN: 978-1-4612-5683-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics