Skip to main content

Mg-Fe Order-Disorder in Ferromagnesian Silicates

  • Chapter
Book cover Advances in Physical Geochemistry

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 2))

Abstract

Intracrystalline distribution in silicates has been a subject of interest among geochemists since the classical work of Goldschmidt (1954).1 The phenomenon of strong Fe2+ -Mg ordering in two of the common rock-forming ferromagnesian silicates, pyroxenes and amphiboles, was discovered in the early sixties through single-crystal X-ray diffraction study. Soon thereafter, the possibility of rapid determination of intracrystalline Fe2+-Mg distributions through the newly discovered technique of Mössbauer resonance spectroscopy attracted the attention of a number of mineralogists and petrologists, because such distributions are related to the thermodynamic mixing properties of the Fe2+ and Mg-end member components, which are necessary for phase equilibrium calculations, and also to the cooling history of rocks. The purpose of this work (Parts I and II) is to critically review and synthesize the various contributions made in this field in the last two decades. We also include some of our own results, which are presented here for the first time. The crystal-chemical details, which are necessary to understand the atomic forces governing the Fe2+-Mg distribution in ferromagnesian silicates, as well as the experimental techniques commonly utilized to determine Fe2+ -Mg distribution, are reviewed in Part I (Ghose). Part II (Ganguly) deals with the thermodynamics and kinetics of Fe2+-Mg order-disorder and their application to geologic problems. Hopefully, this review will stimulate further interest in the subject and provide directions for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J. B. (1974) Visible and near infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system, J. Geophys. Res. 79, 4829–4836.

    Article  Google Scholar 

  • Bancroft, G. M., Burns, R. G. and Maddock, A. G. (1967) Determination of cation distribution in the cummingtonite-grunerite series by Mössbauer spectra, Amer. Mineral. 52, 1009–1026.

    Google Scholar 

  • Bancroft, G. M., Maddock, A. G., Burns, R. G., and Strens, R. G. J. (1966) Cation distribution in anthophyllite from Mössbauer and infra-red spectroscopy, Nature 212, 913–915.

    Article  Google Scholar 

  • Bancroft, G. M., and Burns, R. G. (1967) Interpretation of the electronic spectra of pyroxenes, Amer. Mineral. 52, 1278–1287.

    Google Scholar 

  • Bancroft, G. M. (1974) Mössbauer Spectroscopy: An Introduction for Inorganic Chemists and Geochemists. Academic Press, New York.

    Google Scholar 

  • Birle, J. D., Gibbs, G. V., Moore, P. and Smith, J. V. (1968) Crystal structures of natural olivines, Amer. Mineral. 53, 807–824.

    Google Scholar 

  • Brown, G. E. (1980) Olivines and the silicate spinels. Reviews in Mineralogy, 5, Orthosilicates. Mineral. Soc. America, 275-381.

    Google Scholar 

  • Brown, G. E., Prewitt, Papike, J. J., and Sueno, S. (1972) A comparison of the structures of low and high pigeonite, J. Geophys. Res. 77, 5778–5789.

    Article  Google Scholar 

  • Brown, G. E. and Prewitt, C.T. (1973) High temperature crystal chemistry of hortonolite. Amer. Mineral. 58, 577–587.

    Google Scholar 

  • Brown, M. G. and Gay, P. (1957) Observations on pigeonite. Acta Crystallogr. 10, 440–441.

    Article  Google Scholar 

  • Brown, W. L., Morimoto, N., and Smith, J. V. (1961) A structural explanation of the polymorphism and transitions of MgSiO3. J. Geol. 69, 609–616.

    Article  Google Scholar 

  • Burnham, C. W. (1966) Ferrosilite, Carnegie Inst. Washington Yearbook 65, 285–290.

    Google Scholar 

  • Burnham, C. W., Ohashi, Y., Hafner, S. S., and Virgo, D. (1971) Cation distribution and atomic thermal vibrations in an iron rich orthopyroxene. Amer. Mineral. 56, 850.

    Google Scholar 

  • Burns, R. G. (1970) Mineralogical Applications of Crystal Field Theory. Cambridge University Press, Cambridge.

    Google Scholar 

  • Burns, R. G. and Strens, R. J. G. (1966) Infrared study of the hydroxyl bands in clinoamphiboles. Science 153, 890–892.

    Article  Google Scholar 

  • Buseck, P. R., and Iijima, S. (1975) High resolution electron microscopy of enstatite. II. Geological application. Amer. Mineral. 60, 771–784.

    Google Scholar 

  • Cameron, M. and Papike, J. J. (1981) Structural and chemical variations in pyroxenes. Amer. Mineral. 66, 1–50.

    Google Scholar 

  • Dowty, E., Ross, M., and Cuttita, F. (1972) Fe2+, Mg distribution in Apollo 12021 clinopyroxenes: Evidence for bias in Mössbauer measurements, and relation of ordering to exsolution, Proceedings 3rd Lunar Science Conf., Geochim. Cosmochim. Acta 1, 481–492.

    Google Scholar 

  • Dowty, E., and Lindsley, D. H. (1973) Mössbauer study of synthetic hedenbergite-ferrosilite pyroxenes, Amer. Mineral. 58, 850–868.

    Google Scholar 

  • Duffy, J. (1977) Phase equilibria in the system MgO-MgF2-SiO2-H2O, Ph.D. Dissertation, University of British Columbia, Vancouver, B.C.

    Google Scholar 

  • Eibschutz, M. and Ganiel, U. (1967) Mössbauer studies of Fe2+ in paramagnetic fayalite (Fe2SiO4). Solid State Commun. 5, 267–270.

    Article  Google Scholar 

  • Evans, B. J., Ghose, S., and Hafner, S. (1967) Hyperfine splitting of Fe57 and Mg-Fe order-disorder in orthopyroxenes (MgSiO3 solid solution). J. Geol. 75, 306–322.

    Article  Google Scholar 

  • Evans, B. W., Ghose, S., Rice, J. M., and Trommsdorff, V. (1974) Cummingtonite-anthophyllite phase transformation in metamorphosed ultramafic rocks, Ticino, Switzerland. Trans. Am. Geophys. Union 55, 469.

    Article  Google Scholar 

  • Finger, L. W. (1969) The crystal structure and cation distribution of a grunerite. Mineral. Soc. Am. Spec. Pap. No. 2, 95–100.

    Google Scholar 

  • Finger, L. W. (1969) Determination of cation distribution by least squares refinement of single crystal x-ray data. Carnegie Inst. Washington Year Book 67, 216–217.

    Google Scholar 

  • Finger, L. W. (1970a) Refinement of the crystal structure of an anthophyllite. Carnegie Inst. Washington Year Book 68, 283–288.

    Google Scholar 

  • Finger, L. W. (1970b) Fe/Mg ordering in olivines. Carnegie Inst. Washington Year Book, 69, 302–305.

    Google Scholar 

  • Finger, L. W. and Virgo, D. (1971) Confirmation of Fe/Mg ordering in olivines. Carnegie Inst. Washington Year Book 70, 221–225.

    Google Scholar 

  • Forsyth, J. B. (1980) The Chemical Interpretation of Magnetization Density Distributions in Electron and Magnetization Densities in Molecules and Crystals, edited by P. Becker, pp. 791–821. Plenum, New York.

    Google Scholar 

  • Francis, C. A. and Ribbe, P. H. (1980) The forsterite-tephroite series. I. Crystal structure refinements. Amer. Mineral. 65, 1263–1269.

    Google Scholar 

  • Ghose, S. (1960) Fe-Mg ordering in some ferromagnesian minerals (abstract). Program and Abstracts. American Crystallographic Assoc. Washington Meeting, p. 19.

    Google Scholar 

  • Ghose, S. (1961) The crystal structure of a cummingtonite. Acta Crystallogr. 14, 622–627.

    Article  Google Scholar 

  • Ghose, S. (1962) The nature of Mg2+-Fe2+ distribution in some ferromagnesian silicate minerals, Amer. Mineral. 41, 388–394.

    Google Scholar 

  • Ghose, S. (1965a) Mg2+-Fe2+ order in an orthopyroxene, Mg0.93Fe1.07Si2O6. Z. Kristallogr. 122, 81–99.

    Article  Google Scholar 

  • Ghose, S. (1965b) A scheme of cation distribution in the amphiboles. Mineral. Mag. 35, 46–54.

    Article  Google Scholar 

  • Ghose, S. (1970) Book review: “Mineralogical Application of Crystal Field Theory,” Trans. Amer. Geophys. Union 51, 613.

    Google Scholar 

  • Ghose, S., McCallum, I. S., and Tidy, E. (1973) Luna 20 pyroxenes: exsolution and phase transformation as indicators of petrologic history. Geochim. Cosmochim. Acta 37, 831–839.

    Article  Google Scholar 

  • Ghose, S. and Wan, C. (1974) Strong site preference of Co2+ in olivine, Co1.10Mg0.90SiO4. Contrib. Mineral. Petrol. 47, 131–140.

    Article  Google Scholar 

  • Ghose, S., Wan, C, and McCallum, I. S. (1976) Fe2+-Mg2+ order in an olivine from the lunar anorthosite 67075 and the significance of cation order in lunar and terrestrial olivines. Indiana J. Earth Sci. 3, 1–8.

    Google Scholar 

  • Ghose, S., Wan, C, Okamura, F. P., Ohashi, H., and Weidner, J. R. (1975) Site preference and crystal chemistry of transition metal ions in pyroxenes and olivines (abstract). Acta Crystallogr. 31A, 576.

    Google Scholar 

  • Ghose, S. and Wan, (1982) Crystal chemistry of magnesium rich primitive cummingtonites (In press).

    Google Scholar 

  • Ghose, S. and Weidner, J. R. (1972) Mg2+-Fe2+ order-disorder in cummingtonite (Mg, Fe)7Si8-O22(OH)2: A new geothermometer. Earth Planet. Sci. Letts. 16, 346–354.

    Article  Google Scholar 

  • Ghose, S. and Weidner, J. R. (1974) Site preference of transition metal ions in olivine (abstr.) Geol. Soc. Amer. 6, 751.

    Google Scholar 

  • Gibbs, G. V. (1969) Crystal structure of protoamphibole. Mineral. Soc. Amer. Spec. Pap. No. 2, 101–10

    Google Scholar 

  • Gibbs, G. V., and Ribbe, P. H. (1969) The crystal structures of the humite minerals. I. Norbergite, Amer. Mineral. 54, 376–390.

    Google Scholar 

  • Gibbs, G. V., Ribbe, P. H., and Anderson, W. (1970) The crystal structures of the humite minerals. II. Chondrodite, Amer. Mineral. 55, 1182–1194.

    Google Scholar 

  • Goldman, D. S., and Rossman, G. R. (1977) The spectra of iron in orthopyroxene revisited: the splitting of the ground state, Amer. Mineral. 62, 151–157.

    Google Scholar 

  • Goldman, D. S., and Rossman, G. R. (1979) Determination of quantitative cation distribution in orthopyroxenes from electronic absorption spectra, Phys. Chem. Minerals. 4, 43–53.

    Article  Google Scholar 

  • Gütlich, P., Link, R., and Trautwein, A. (1978) Mössbauer Spectroscopy and Transition Metal Chemistry. Springer-Verlag, Berlin.

    Google Scholar 

  • Hafner, S. S., and Ghose, S. (1971) Iron and magnesium distribution in cum-mingtonites, Z. Kristallogr. 133, 301–326.

    Article  Google Scholar 

  • Iijima, S., and Buseck, P. R. (1975) High resolution electron microscopy of enstatite. I. Twinning, polymorphism and polytypistn, Amer. Mineral. 60, 758–770.

    Google Scholar 

  • Jones, N. W., Ribbe, P. H., and Gibbs, G. V. (1969) Crystal chemistry of the humite minerals, Amer. Mineral. 54, 391–411.

    Google Scholar 

  • Khristoforov, K. K., Nikitina, L. P., Krizhansky, L. M., and Yekimov, S. P. (1974) Kinetics of disordering of distribution of Fe2+ in orthopyroxene structures, Dokl. Akad. Nauk SSSR 214, 909–912.

    Google Scholar 

  • Kockman, V., and Rucklidge, J. (1973) The crystal structure of a titaniferous clinohumite, Can. Mineral. 12, 39–45.

    Google Scholar 

  • Malysheva, T. V., Kurash, V. V., and Ermakov, A. N. (1969) Study of the isomorphic replacement of magnesium and iron (II) in olivines by Mössbauer resonance spectroscopy, Geokhimiya 11, 1405–1408.

    Google Scholar 

  • Morimoto, N. (1956) The existence of monoclinic pyroxenes with the space group C 5 2h-P21/c, Japan. Acad. 32, 750–752.

    Google Scholar 

  • Morimoto, N., Appleman, D. E., and Evans, H. T., Jr. (1960) The crystal structure of clinoenstatite and pigeonite, Z. Kristallogr. 114, 120–147.

    Article  Google Scholar 

  • Mueller, R. F. (1973) System CaO-MgO-FeO-SiO2-C-H2-O2; some considerations from nature and experiment. Amer. J. Sci. 273, 152–170.

    Article  Google Scholar 

  • Nover, G., and Will, G. (1981) Structure refinements of seven natural olivine crystals and the influence of the oxygen partial pressure on the cation distribution. Z. Kristallogr. 155, 27–45.

    Article  Google Scholar 

  • Ohashi, Y., and Finger, L. W. (1976) The effects of Ca substitution on the structure of clinoenstatite. Carnegie Inst. Washington Year Book 75, 743–746.

    Google Scholar 

  • O’Nions, R. K. and Smith, D. G. W. (1973) Bonding in silicates: an assessment of bonding in orthopyroxene. Geochim. Cosmochim. Acta 37, 249–257.

    Article  Google Scholar 

  • Papike, J. J., and Cameron, M. M. (1976) Crystal chemistry of silicate minerals of geophysical interest. Rev. Geophys. Space Phys. 14, 37–80.

    Article  Google Scholar 

  • Papike, J. J., Prewitt, Sueno, S., and Cameron, M. (1973) Pyroxenes: comparisons of real and ideal structural topologies. Z. Kristallogr. 138, 254–273.

    Article  Google Scholar 

  • Papike, J. J., and Ross, M. (1970) Gedrites: crystal structures and intracrystalline cation distributions Amer. Mineral. 55, 1945–1972.

    Google Scholar 

  • Papike, J. J., Ross, M., and Clark, J. R. (1969) Crystal chemical characterization of clinoamphiboles based on five new structure refinements. Mineral. Soc. Amer. Spec. Pap. No. 2, 117–13

    Google Scholar 

  • Pauling, L. (1960) The Nature of the Chemical Bond. Cornell University Press, Ithaca, New York, 3rd. Ed.

    Google Scholar 

  • Prewitt, Papike, J. J., and Ross, M. (1970) Cummingtonite: a reversible nonquenchable transition from P21/m to C2/m symmetry. Earth Planet Sci. Letters, 8, 448–450.

    Article  Google Scholar 

  • Prewitt, Brown, G. E., and Papike, J. J. (1971) Apollo 12 clinopyroxenes: high temperature x-ray diffraction studies. Proc. 2nd Lunar Sci. Conf. 1, 59–68.

    Google Scholar 

  • Rabbit, J. C. (1948) A new study of the anthophyllite series. Amer. Mineral. 33, 263–275.

    Google Scholar 

  • Rajamani, V., Brown, G. E., and Prewitt, (1975) Cation ordering in Ni-Mg olivine. Amer. Mineral. 60, 292–299.

    Google Scholar 

  • Ribbe, P. H., and Gibbs, G. V. (1971) Crystal structures of the humite minerals. III. Mg/Fe ordering in humite and its relation to other ferromagnesian silicates. Amer. Mineral. 56, 1155–1173.

    Google Scholar 

  • Rice, J. M., Evans, W., and Trommsdorff, V. (1974) Widespread occurrence of magnesiocummingtonite in ultramafic schists, Cima di Gagnone, Ticino, Switzerland, Contrib. Mineral. Petrol 43, 245–251.

    Article  Google Scholar 

  • Robinson, K., Gibbs, G. V., and Ribbe, P. H. (1973) The crystal structures of the humite minerals. IV. Clinohumite and titanoclinohumite, Amer. Mineral. 58, 43–49.

    Google Scholar 

  • Ross, M., Papike, J. J., and Shaw, H. R. (1969) Exsolution textures in amphiboles as indicators of sub-solidus thermal histories. Mineral Soc. Amer. Spec. Pap. 2, 275–299.

    Google Scholar 

  • Rossman, G. R. (1979) Structural information from quantitative infra-red spectra of minerals. Trans. Amer. Crystallographic Assoc. 15, 77–91.

    Google Scholar 

  • Sadanaga, R., Okamura, F. P., and Takeda, H. (1969) X-ray study of the phase transformation of enstatite. Mineral. J. (Japan) 6, 110–130.

    Google Scholar 

  • Saxena, S. K., and Ghose, S. (1971) Mg2+-Fe2+ order-disorder and the thermodynamics of the orthopyroxene crystalline solution. Amer. Mineral. 56, 532–559.

    Google Scholar 

  • Seifert, F. and Virgo, D. (1974) Temperature dependence of intra-cyrstalline Fe2+-Mg distribution in a natural anthophyllite. Carnegie Inst. Wash. Year Book, 73, 405–411.

    Google Scholar 

  • Shannon, R. D. and Prewitt, C. T. (1970) Revised values of effective ionic radii. Acta Crystallogr. B26, 1046–1048.

    Google Scholar 

  • Shinno, I. (1974) Mössbauer studies of olivine—the relation between Fe2+ site occupancy number T Mi and interplanar distance d 130. Mem. Geol. Soc. Japan 1, 11–17.

    Google Scholar 

  • Shinno, I., Hyashi, M., and Kuroda, Y. (1974) Mössbauer studies of natural olivines, Mineral. J. Japan 7, 344–358.

    Google Scholar 

  • Smyth, J. R. (1971) Protoenstatite: a crystal structure refinement at 1100°C. Z. Kristallogr. 134, 262–274.

    Article  Google Scholar 

  • Smyth, J. R. (1973) An orthopyroxene structure up to 850° Amer. Mineral. 58, 636–648.

    Google Scholar 

  • Smyth, J. R. (1974) The high temperature crystal chemistry of clinohypersthene. Amer. Mineral. 59, 1069–1082.

    Google Scholar 

  • Smyth, J. R. (1975) High temperature crystal chemistry of fayalite. Amer. Mineral. 60, 1092–1097.

    Google Scholar 

  • Smyth, J. R. and Burnham, C. W. (1972) The crystal structures of high and low clinohypersthene. Earth Planet Sci. Letts. 14, 183–189.

    Article  Google Scholar 

  • Smyth, J. R., and Hazen, R. M. (1973) The crystal structures of forsterite and hortonolite at several temperatures up to 900°C. Amer. Mineral. 58, 588–593.

    Google Scholar 

  • Smyth, J. R., and Ito, J. (1977) The synthesis and crystal structure of a magnesium-lithium-scandium protopyroxene, Amer. Mineral. 62, 1252–1257.

    Google Scholar 

  • Stephenson, D. A., Sclar, and Smith, J. V. (1966) Unit cell volumes of synthetic orthoenstatite and low clinoenstatite, Mineral. Mag. 35, 838–846.

    Article  Google Scholar 

  • Sueno, S., Cameron, M., and Prewitt, (1976) Orthoferrosilite: high temperature crystal chemistry, Amer. Mineral. 61, 38–53.

    Google Scholar 

  • Sueno, S., Papike, J. J., Prewitt, and Brown, G. E. (1972) Crystal structure of high cummingtonite, J. Geophys. Res. 77, 5767–5777.

    Article  Google Scholar 

  • Tofield, (1975) The study of covalency by magnetic neutron scattering, in Structure and Bonding, Vol. 21, pp. 1–87. Springer-Verlag, New York, 1975.

    Google Scholar 

  • Tofield, (1976) Covalency effects in magnetic interactions, in Application of the Mössbauer effect. J. de Physique C-6 539–570.

    Google Scholar 

  • Thompson, J. Jr. (1970) Geometrical possibilities for amphibole structures: model biopyriboles, Amer. Mineral. 55, 292–293.

    Google Scholar 

  • Thompson, j. Jr. (1978). Biopyriboles and polysomatic series, Amer. Mineral. 63, 239–249.

    Google Scholar 

  • Van Valkenburg, A. (1961) Synthesis of the humites, Mg2SiO4 ∙ Mg (F, OH)2, J. Res. Nat. Bur. Standards, A. Phys. Chem. 65, 415–428.

    Google Scholar 

  • Varret, F. (1976) Crystal field effects on high-spin ferrous ion. J. de Physique. 37, C6437–C6456.

    Google Scholar 

  • Veblen, D. R., and Burnham, W. (1978a) New biopyriboles from Chester, Vermont: I. Descriptive mineralogy, Amer. Mineral. 63, 1000–1009.

    Google Scholar 

  • Veblen, D. R., and Burnham, C. W. (1978b) New biopyriboles from Chester, Vermont. II. The crystal chemistry of jimthompsonite, clinojimthompsonite, and chesterite, and the amphibole-mica reaction, Amer. Mineral. 63, 1053–1073.

    Google Scholar 

  • Veblen, D. R., Buseck, P. R., and Burnham, W. (1977) Asbestiform chain silicates: new minerals and structural groups, Science 198, 359–365.

    Article  Google Scholar 

  • Virgo, D., and Hafner, S. (1969) Fe2+, Mg order-disorder in heated orthopyroxenes, Mineral. Soc. Amer. Spec. Pap. No. 2, 67–81.

    Google Scholar 

  • Virgo, D., and Hafner, S. S. (1972) Temperature-dependent Mg, Fe distribution in a lunar olivine, Earth. Planet. Sci. Lett. 14, 305–312.

    Article  Google Scholar 

  • Viswanathan, K., and Ghose, S. (1965) The effect of Mg2+-Fe2+ substitution on the cell dimension of cummingtonites, Amer. Mineral. 50, 1106–1112.

    Google Scholar 

  • Walsh, D., Donnay, G., and Donnay, J. D. H. (1974) Jahn-Teller effects in ferromag-nesian minerals: pyroxenes and olivines, Bull. Soc. fr. Mineral. Cristallogr. 97, 170–183.

    Google Scholar 

  • Wenk, H. R., and Raymond, K. N. (1973) Four new structure refinements of olivine, Z. Kristallogr. 137, 86–105.

    Article  Google Scholar 

  • Wertheim, G. K. (1964) Mössbauer Effect: Principles and Applications. Academic Press, New York.

    Google Scholar 

  • Will, G. and Nover, K. (1979) Influence of oxygen partial pressure on the Mg/Fe distribution in olivines. Phys. Chem. Minerals 4, 199–208.

    Article  Google Scholar 

  • Woolf son, M. M. (1970) An introduction to X-ray crystallography. Cambridge Univ. Press, 380 pp.

    Google Scholar 

  • Yamamoto, K. and Akimoto, S. (1974) High pressure and high temperature investigations in the system MgO-SiO2-H2O. J. Solid State Chem. 9, 187–195.

    Article  Google Scholar 

  • Yamamoto, K., and Akimoto, S. (1977) The system MgO-H2O-SiO2 at high pressures and temperatures-stability field for hydroxyl-chondrodite, hydroxyl-clinohumite and 10 Å-phase. Amer. J. Sci. 277, 288–312.

    Article  Google Scholar 

References

  • Besancon, J. R. (1981a) Rate of cation ordering in orthopyroxenes, Amer. Mineral. 66, 965–973.

    Google Scholar 

  • Besancon, J. R. (1981b) Cooling rate of orthopyroxene-bearing rocks estimated from magnesium-iron intersite distribution, Trans. Amer. Geophys. Union EOS 62, 437.

    Google Scholar 

  • Bonnischen, (1969) Metamorphic pyroxenes and amphiboles in the Biwabik Iron Formation, Dunka River Area, Minnesota. Mineral. Soc. Amer. Spec. Pap. 2, 217–239.

    Google Scholar 

  • Boyd, F. R. (1973) A pyroxene geotherm, Geochim. Cosmochim. Acta 37, 2533–2546.

    Article  Google Scholar 

  • Bradley, R. S. (1962) Thermodynamic calculations of phase equilibria involving fused salts. Part 1. General theory and application to equilibria involving calcium carbonate at high pressure, Amer. J. Sci. 260, 374–382.

    Article  Google Scholar 

  • Bragg, W. L., and Williams, E. J. (1934) The effect of thermal agitation on atomic arrangement in alloys, Proc. Roy. Soc. London 151A, 540–566.

    Google Scholar 

  • Butler, P. (1969) Mineral compositions and equilibria in the metamorphosed iron formation of the Gagnon Region, Quebec, Canada, J. Petrology 10, 56–101.

    Google Scholar 

  • Darken, L. S., and Gurry, R. W. (1953) Physical Chemistry of Metals. McGraw-Hill, New York.

    Google Scholar 

  • Dienes, G. J. (1955) Kinetics of order-disorder transformation, Acta Metall. 3, 549–557.

    Article  Google Scholar 

  • Dodson, M. H. (1976) Kinetic processes and thermal history of slowly cooling solids, Nature 259, 551–553.

    Article  Google Scholar 

  • Flood, H., Forland, T., and Grjotheim, K. (1954) Uber den Zusammenhang zwischen konzentration and aktivitäten in geschmolzenen salzmischungen, Z. Anorg. Allgem. Chem. 276, 290–315.

    Article  Google Scholar 

  • Ganguly, J. (1976) Energetics of natural garnet solid solutions. II. Mixing of the calciumsilicate end-members, Contrib. Mineral. Petrol. 55, 81–90.

    Article  Google Scholar 

  • Ghose, S. (1982) Order-disorder in ferromagnesian silicates. I. Crystal-chemistry, in Advances in Physical Geochemistry, 2, edited by S. K. Saxena, Springer-Verlag, Berlin/Heidelberg/New York.

    Google Scholar 

  • Ghose, S., and Weidner, J. R. (1972) Mg2+-Fe2+ order-disorder in cummingtonite, (Mg, Fe)7Si8O22(0H)2: A new geothermometer, Earth Planet. Sci. Lett. 16, 346–354.

    Article  Google Scholar 

  • Glasstone, S. Laidler, J., and Eyring, H. (1941) The Theory of Rate Processes. McGraw-Hill, New York.

    Google Scholar 

  • Grover, J. (1974) On calculating activity coefficients and other excess functions from the intracrystalline exchange properties of a double-site phase, Geochim. Cosmochim. Acta 38, 1527–1548.

    Article  Google Scholar 

  • Grover, J., and Orville, P. (1970) Partitioning of cations in coexisting single-and multi-site phases: A reply with incidental corrections, Geochim. Cosmochim. Acta 34, 1361–1364.

    Article  Google Scholar 

  • Hafner, S. S., and Ghose, S. (1971) Iron and magnesium distribution in cum-mingtonites (Fe, Mg)7Si8O22(OH)2, Z Kristallogr. 133, 301–326.

    Article  Google Scholar 

  • Hafner, S. S., Virgo, D., and Warburton, D. (1971) Cation distribution and cooling history of clinopyroxenes from Oceanus Procellarum, Proc. Second Lunar Sci. Conf. 1, 91–108.

    Google Scholar 

  • Kerrick, D. M., and Darken, L. S. (1975) Statistical thermodynamic models of ideal oxide and silicate solid solutions, with application to plagioclase, Geochim. Cosmochim. Acta 39, 1431–1442.

    Article  Google Scholar 

  • Khristoforov, K. K., Nikitina, L. P., Krizhanskiy, L. M., and Yekimov, S. P. (1974) Kinetics of disordering of distribution of Fe2+ in orthopyroxene structures, Dokl. Akad. Nauk SSSR 214, 909–912 (transi. Dokl. Akad. Nauk SSSR 214, 165-167 (1975).

    Google Scholar 

  • Kishina, N. R. (1978) Decomposition structures and Fe2+-Mg ordering in pyroxenes as indicators of subsolidus cooling rates, Geochem. Int. 15, 65–78.

    Google Scholar 

  • Kretz, R. (1978) Distribution of Mg, Fe2+ and Mn in some calcic pyroxene horn-blende-biotite-garnet gneisses and amphibolites from the Grenville Province, J. Geology 86, 599–619.

    Article  Google Scholar 

  • Lane, D. L., and Ganguly, J. (1980) A12O3 solubility in orthopyroxene in the system MgO-Al2O3-SiO2: A réévaluation and mantle geotherm, J. Geophys. Res. 85, 6963–6972.

    Article  Google Scholar 

  • Matsui, Y., and Banno, S. (1965) Intracrystalline exchange equilibrium in silicate solid solutions, Proc. Japan Acad. 41, 461–466.

    Google Scholar 

  • McCallister, R. H., Finger, L. W., and Oshashi, Y. (1976) Intracrystalline Fe2+-Mg equilibria in three natural Ca-rich clinopyroxenes, Amer. Mineral. 61, 671–676.

    Google Scholar 

  • McFadden, P. L. (1977) A paleomagnetic determination of emplacement temperature of some South African kimberlites, Geophys. J. R. Astr. Soc. 50, 587–604.

    Google Scholar 

  • Mueller, R. F. (1960) Compositional characteristics and equilibrium relations in mineral assemblages of a metamorphosed iron formation, Amer. J. Sci. 258, 449–497.

    Article  Google Scholar 

  • Mueller, R. F. (1961) Analysis of relations among Mg, Fe and Mn in certain metamorphic minerals, Geochim. Cosmochim. Ada 25, 267–296.

    Article  Google Scholar 

  • Mueller, R. F. (1962) Energetics of certain silicate solid solutions, Geochim. Cosmochim. Acta 26, 581–598.

    Article  Google Scholar 

  • Mueller, R. F. (1967) Model for order-disorder kinetics in certain quasi-binary crystals of continuously variable composition, J. Phys. Chem. Solids 28, 2239–2243.

    Article  Google Scholar 

  • Mueller, R. F. (1969) Kinetics and thermodynamics of intracrystalline distribution, Mineral. Soc. Amer. Spec. Pap. No. 2, 83–93.

    Google Scholar 

  • Mueller, R. F. (1970) Two-step mechanism for order-disorder kinetics in silicates, Amer. Mineral. 55, 1210–1218.

    Google Scholar 

  • Mueller, R. F. (1973) System CaO-MgO-FeO-SiO2-C-H2-O2: Some correlations from nature and experiment, Amer. J. Sci. 273, 152–170.

    Article  Google Scholar 

  • Mueller, R. F., Ghose, S., and Saxena, S. K. (1970) Partitioning of cations between coexisting single-and multi-site phases: A discussion, Geochim. Cosmochim. Acta 34, 1356–1360.

    Article  Google Scholar 

  • Navrotsky, A. (1971) The intracrystalline cation distribution and the thermodynamics of solid solution formation in the system FeSiO3-MgSiO3, Amer. Mineral. 56, 201–211.

    Google Scholar 

  • Nix, F. C, and Shockley, W. (1938) Order-disorder transformation in alloys, Rev. Mod. Phys. 10, 1–67.

    Article  Google Scholar 

  • Powell, R. (1976) Activity-composition relationships for crystalline solutions, in Thermodynamics in Geology, edited by D. G. Fraser, Reidel, Dordrecht, The Netherlands.

    Google Scholar 

  • Papike, J. J., and Ross, M. (1970) Gedrites: crystal structures and intracrystalline cation distributions, Amer. Mineral. 55, 1945–1972.

    Google Scholar 

  • Rabbitt, J. C. (1948) A new study of the anthophyllite series, Amer. Mineral. 33, 263–323.

    Google Scholar 

  • Ramberg, H., and DeVore, G. W. (1951) The distribution of Fe2+ and Mg2+ in coexisting olivines and pyroxenes, J. Geology 59, 193–210.

    Article  Google Scholar 

  • Sack, R. O. (1980) Some constraints on the thermodynamic mixing properties of Fe-Mg orthopyroxenes and olivines, Contrib. Mineral. Petrol 71, 257–269.

    Article  Google Scholar 

  • Saxena, S. K. (1973) Thermodynamics of Rock-Forming Crystalline Solutions. Springer-Verlag, Berlin/Heidelberg/New York.

    Google Scholar 

  • Saxena, S. K., and Ghose, S. (1971) Mg2+-Fe2+ order-disorder and the thermodynamics of the orthopyroxene crystalline solution, Amer. Mineral. 56, 532–559.

    Google Scholar 

  • Saxena, S. K., Ghose, S., Turnock, A. C. (1974) Cation distribution in low-calcium pyroxenes: dependence on temperature and calcium content and the thermal history of lunar and terrestrial pigeonites, Earth and Plant. Sci. Lett. 21, 194–200.

    Article  Google Scholar 

  • Seifert, F. (1975) Equilibrium Mg2+-Fe2+ cation distribution in anthophyllite, Amer. J. Sci. 278, 1323–1333.

    Article  Google Scholar 

  • Seifert, F., and Virgo, D. (1974) Temperature dependence of intracrystalline Fe2+-Mg distribution in a natural anthophyllite, Carnegie Inst. Washington Yearbook 73, 405–411.

    Google Scholar 

  • Seifert, F., and Virgo, D. (1975) Kinetics of Fe2+-Mg order-disorder reaction in anthophyllites: Quantitative cooling rates, Science 188, 1107–1109.

    Article  Google Scholar 

  • Snellenburg, J. W. (1975) Computer simulation of the distribution of octahedral cations in orthopyroxenes, Amer. Mineral. 60, 441–447.

    Google Scholar 

  • Stout, J. H. (1972) Phase petrology and mineral chemistry of coexisting amphiboles from Telemark, Norway, J. Petrology 13, 99–145.

    Google Scholar 

  • Temkin, M. (1945) Mixtures of fused salts as ionic solutions, Acta Physicochim. URSS 20, 411–420.

    Google Scholar 

  • Thompson, J. B. (1969) Chemical reactions in crystals, Amer. Mineral. 54, 341–375.

    Google Scholar 

  • Virgo, D., and Hafner, S. S. (1969) Order-disorder in heated orthopyroxenes, Mineral. Soc. Amer. Spec. Pap. No. 2, 67–81.

    Google Scholar 

  • Virgo, D., and Hafner, S. S. (1970) Fe2+-Mg order-disorder in natural orthopyroxenes, Amer. Mineral. 55, 210–223.

    Google Scholar 

  • Wood, B. J., and Nicholls, J. (1978) The thermodynamic properties of reciprocal solid solutions, Contrib. Mineral. Petrol. 66, 389–400.

    Article  Google Scholar 

  • Yund, R. A., and Tullis, J. (1980) The effect of water, pressure, and strain on Al/Si order-disorder kinetics in feldspar, Contrib. Mineral. Petrol. 72, 297–302.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Ghose, S., Ganguly, J. (1982). Mg-Fe Order-Disorder in Ferromagnesian Silicates. In: Saxena, S.K. (eds) Advances in Physical Geochemistry. Advances in Physical Geochemistry, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5683-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5683-0_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5685-4

  • Online ISBN: 978-1-4612-5683-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics