Control of Stipe Elongation by the Pileus and Mycelium in Fruitbodies of Flammulina velutipes and Other Agaricales

  • Hans E. Gruen
Part of the Springer Series in Microbiology book series (SSMIC)

Abstract

Interactions between different regions of a mycelium and between different mycelia play an important role in morphogenesis and growth of fungi. The better understood interactions are those which are mediated by substances secreted into the substrate, and which result in the initiation and growth of sexual organs. In Achlya and Mucorales specific sexual hormones have been identified (Barksdale, 1969; Bu’Lock, 1976; van den Ende, 1976), and diffusible, but as yet unidentified compounds play a similar role in the sexual interactions of Ascobolus stercorarius (Bull.) Schroet. (Bistis, 1956, 1957). Bistis also provided strong evidence that initiation of apothecia depends on a diffusible agent released by the ascogonium.

Keywords

Starch Dust Agar Carbohydrate Shrinkage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almoslechner, E.: Die Hefe als Indikator für Wuchsstoffe. Planta (Berl.) 22, 515–542 (1934).CrossRefGoogle Scholar
  2. Aschan-Åberg, K.: The production of fruit bodies in Collybia velutipes. II. Further studies on the influence of different culture conditions. Physiol. Plant. 11, 312–328 (1958).CrossRefGoogle Scholar
  3. Barksdale, A. W.: Sexual hormones of Achlya and other fungi. Science 166, 831–837 (1969).PubMedCrossRefGoogle Scholar
  4. Bistis, G.: Sexuality in Ascobolus stercorarius. I. Morphology of the ascogonium; plasmogamy; evidence for a sexual hormonal mechanism. Am. J. Bot. 43, 389–394 (1956).CrossRefGoogle Scholar
  5. Bistis, G.: Sexuality in Ascobolus stercorarius. II. Preliminary experiments on various aspects of the sexual process. Am. J. Bot. 44, 436–443 (1957).CrossRefGoogle Scholar
  6. Borriss, H.: Beiträge zur Wachstums- und Entwicklungsphysiologie der Fruchtkörper von Coprinus lagopus. Planta (Berl.) 22, 28–69 (1934a).CrossRefGoogle Scholar
  7. Borriss, H.: Über den Einfluss äusserer Faktoren auf Wachstum und Entwicklung der Fruchtkörper von Corprinus lagopus. Planta (Berl.) 22, 644–684 (1934b).CrossRefGoogle Scholar
  8. Bouillenne-Walrand, M., Engels, L., Wiliam, A.: Teneur en substances de croissance du champignon de couche (Agaricus hortensis C. var. alba). Mushroom Sci. 2, 26–28 (1953).Google Scholar
  9. Brefeld, O.: Botanische Untersuchungen über Schimmelpilze, III. Heft: Basidiomyceten I. Leipzig: Arthur Felix 1877a.Google Scholar
  10. Brefeld, O.: Ueber die Bedeutung des Lichtes für die Entwickelung der Pilze. (I. Mittheilung.) Sitz. Ber. Ges. Naturf. Freunde Berlin 1877, 127–136 (1877b).Google Scholar
  11. Bret, J. P.: Respective role of cap and mycelium on stipe elongation of Coprinus congregatus. Trans. Br. Mycol. Soc. 68, 363–369 (1977a).CrossRefGoogle Scholar
  12. Bret, J. P.: Release of an inhibiting stipe elongation substance by continuous light grown fruit body caps of Coprinus congregatus. Second Int. Mycol. Congress, Tampa, Fla., Abstr. Vol. A-L, p. 67 (1977b).Google Scholar
  13. Buller, A. H. R.: Researches on Fungi, Vol. 1. London: Longmans, Green and Co. 1909.Google Scholar
  14. Bu’Lock, J. D.: Hormones in fungi. In: The Filamentous Fungi. Vol. 2, Biosynthesis and Metabolism. Smith, J. E., Berry, D. R. (eds.). New York: John Wiley & Sons 1976, pp. 345–368.Google Scholar
  15. Butler, G. M.: Growth of hyphal branching systems in Coprinus disseminatus. Ann. Bot. (Lond.), N.S. 25, 341–352 (1961).Google Scholar
  16. Cox, R. J., Niederpruem, D. J.: Differentiation in Coprinus lagopus III. Expansion in excised fruit-bodies. Arch. Microbiol. 105, 257–260 (1975).PubMedCrossRefGoogle Scholar
  17. Craig, G. D., Gull, K., Wood, D. A.: Stipe elongation in Agaricus bisporus. J. Gen. Microbiol. 102, 337–347 (1977).Google Scholar
  18. Durand, R. J. C.: Interaction of light and temperature on fruitbody morphogenesis in a basidiomycete, Coprinus congregatus. Second Int. Mycol. Congress, Tampa, Fla., Abstr. Vol. A-L, p. 151 (1977).Google Scholar
  19. Eilers, F. I.: Growth regulation in Coprinus radiatus. Arch. Microbiol. 96, 353–364 (1974).CrossRefGoogle Scholar
  20. Gooday, G. W.: Control of development of excised fruit bodies and stipes of Coprinus cinereus. Trans. Br. Mycol. Soc. 62, 391–399 (1974).CrossRefGoogle Scholar
  21. Gräntz, F.: Ueber den Einfluss des Lichtes auf die Entwicklung einiger Pilze. Doctoral Thesis, Unviversität Leipzig, 74 pp. (1898).Google Scholar
  22. Gruen, H. E.: Auxins and fungi. Ann. Rev. Plant Physiol. 10, 405–440 (1959).CrossRefGoogle Scholar
  23. Gruen, H. E.: Endogenous growth regulation in carpophores of Agaricus bisporus. Plant Physiol. 38, 652–666 (1963).PubMedCrossRefGoogle Scholar
  24. Gruen, H. E.: Growth regulation in fruitbodies of Agaricus bisporus. Mushroom Sci. 6, 103–120 (1967).Google Scholar
  25. Gruen, H. E.: Growth and rotation of Flammulina velutipes fruitbodies and the dependence of stipe elongation on the cap. Mycologia 61, 149–166 (1969).CrossRefGoogle Scholar
  26. Gruen, H. E.: Promotion of stipe elongation in Flammulina velutipes by a diffusate from excised lamellae supplied with nutrients. Can. J. Bot. 54, 1306–1315 (1976).CrossRefGoogle Scholar
  27. Gruen, H. E.: Control of rapid stipe elongation by the lamellae in fruit bodies of Flammulina velutipes. Can. J. Bot. 57, 1131–1135 (1979).CrossRefGoogle Scholar
  28. Gruen, H. E., Wu, S.: Dependence of fruitbody elongation on the mycelium in Flammulina velutipes. Mycologia 64, 995–1007 (1972a).CrossRefGoogle Scholar
  29. Gruen, H. E., Wu, S.: Promotion of stipe elongation in isolated Flammulina velutipes fruit bodies by carbohydrates, natural extracts, and amino acids. Can. J. Bot. 50, 803–818 (1972b).CrossRefGoogle Scholar
  30. Gyurkó, P.: Die Rolle der Belichtung bei dem Anbau des Austernseitlings (Pleurotus ostreatus). Mushroom Sci. 8, 461–469 (1972).Google Scholar
  31. Hagimoto, H.: Studies on the growth of fruitbody of fungi IV. The growth of fruit body of Agaricus bisporus and the economy of the mushroom growth hormone. Bot. Mag. (Tokyo) 76, 256–263 (1963).Google Scholar
  32. Hagimoto, H.: On the growth of the fruitbody of Agaricus bisporus (Lange) Sing. Trans. Mycol. Soc. Jpn. 4, 158–164 (1964).Google Scholar
  33. Hagimoto, H., Konishi, M.: Studies on the growth of fruitbody of fungi I. Existence of a hormone active to the growth of fruitbody in Agaricus bisporus (Lange) Sing. Bot. Mag. (Tokyo) 72, 359–366 (1959).Google Scholar
  34. Hagimoto, H., Konishi, M.: Studies on the growth of fruitbody of fungi II. Activity and stability of the growth hormone in the fruitbody of Agaricus bisporus (Lange) Sing. Bot. Mag. (Tokyo) 73, 283–287 (1960).Google Scholar
  35. Jeffreys, D. B., Greulach, V. A.: The nature of tropisms of Coprinus sterquilinus. J. Elisha Mitchell Sci. Soc. 72, 153–158 (1956).Google Scholar
  36. Kamada, T., Miyazaki, S., Takemaru, T.: Quantitative changes of DNA, RNA and protein during basidiocarp maturation in Coprinus macrorhizus. Trans. Mycol. Soc. Jpn. 17, 451–460 (1976).Google Scholar
  37. Kitamoto, Y., Gruen, H. E.: Distribution of cellular carbohydrates during development of the mycelium and fruitbodies of Flammulina velutipes. Plant Physiol. 58, 485–491 (1976).PubMedCrossRefGoogle Scholar
  38. Knoll, F.: Untersuchungen über Längenwachstum und Geotropismus der Fruchtköperstiele von Coprinus stiriacus. Sitzungsber. Kaiserl. Akad. Wiss., Mathem.-Naturwiss. Kl., Abt. I., 118, 575–634 (1909).Google Scholar
  39. Konishi, M.: Growth promoting effect of certain amino acids on the Agaricus fruitbody. Mushroom Sci. 6, 121–134 (1967).Google Scholar
  40. Konishi, M., Hagimoto, H.: Studies on the growth of fruit body of fungi III. Occurrence, formation and destruction of indole acetic acid in the fruit body of Agaricus bisporus (Lange) Sing. Plant Cell Physiol. 2, 425–434 (1961).Google Scholar
  41. Konishi, M., Hagimoto, H.: Growth-promoting effect of amino acids in the Agaricus fruitbody. Plant Physiol, suppl. 37, ix-x (1962).Google Scholar
  42. Kozová, J., Řeháček, Z.: Antibiotics of Flammulina velutipes cultivated in submerged culture. Folia Microbiol. 12, 567–568 (1967).CrossRefGoogle Scholar
  43. Larpent, J. P.: Caractères et déterminisme des corrélations d’inhibition dans le mycélium jeune de quelques champignons. Ann. Sci. Nat. Bot. Biol. Vég. 12e Sér. 7, 1–130 (1966).Google Scholar
  44. Magnus, W.: Über die Formbildung der Hutpilze. Arch. Biontol. 1, 85–161 (1906).Google Scholar
  45. Manachère, G.: Recherches physiologiques sur la fructification de Coprinus congregates Bull, ex Fr.: action de la lumière; rythme de production de carpophores. Ann. Sci. Nat. Bot. Biol. Vég. 12e Sér 11, 1–96 (1970).Google Scholar
  46. Matthews, T. R., Niederpruem, D. J.: Differentiation in Coprinus lagopus I. Control of fruiting and cytology of initial events. Arch. Mikrobiol. 87, 257–268 (1972).PubMedCrossRefGoogle Scholar
  47. Michalenko, G. O.: The assay of growth-promoting substances in Flammulina velutipes fruitbodies with a standardized stipe curvature test. Ph.D. Thesis, Univ. of Saskatchewan, 213 pp. (1971).Google Scholar
  48. Naudy-de Serres, M., Latché, J. C., Baldy, P.: Culture de Collybia velutipes (Curt.) Quél, sur milieu synthétique liquide. Analyse de quelques constituants du mycélium à son premier stade de développement à l’obscurité. C. R. Acad. Sci. (Paris) Sér. D 281, 259–262 (1975).Google Scholar
  49. Nielson, N.: Über das Vorkommen von Wuchsstoff bei Boletus edulis. Biochem. Z. 249, 196–198 (1932).Google Scholar
  50. Pegg, G. F.: Gibberellin-like substances in the sporophores of Agaricus bisporus (Lange) Imbach. J. Exp. Bot. 24, 675–688 (1973).CrossRefGoogle Scholar
  51. Pinto-Lopez, J., Almeida, M. G.: “Coprinus lagopus” a confusing name as applied to several species. Port. Acta Biol. Ser. B, 11, 167–204 [1972] (1970/1971).Google Scholar
  52. Plunkett, B. E.: Nutritional and other aspects of fruitbody production in pure cultures of Collybia velutipes (Curt.) Fr. Ann. Bot. (Lond.) N.S. 17, 193–217 (1953).Google Scholar
  53. Reijnders, A. F.: Les Problèmes du Développement des Carpophores des Agaricales et de Quelques Groupes Voisins. Dr. W. Junk, Den Haag 1963.Google Scholar
  54. Robert, J. C.: Fruiting of Coprinus congregatus: biochemical changes in fruitbodies during morphogenesis. Trans. Br. Mycol. Soc. 68, 379–387 (1977).CrossRefGoogle Scholar
  55. Rypáček, V., Sladký, Z.: The character of endogenous growth regulators in the course of development in the fungus Lentinus tigrinus. Mycopathol. Mycol. Appl. 46, 65–72 (1972).PubMedCrossRefGoogle Scholar
  56. Rypáček, V., Sladký Z.: Relation between the level of endogenous growth regulators and the differentiation of the fungus Lentinus tigrinus studied in a synthetic medium. Biol. Plant. (Prague) 15, 20–26 (1973).Google Scholar
  57. Schmitz, J.: Mykologische Beobachtungen, als Beiträge zur Lebens- und Entwicklungsgeschichte einiger Schwämme aus der Klasse der Gastromyceten und Hymenomyceten. Linnaea 16, 141–215 (1842).Google Scholar
  58. Schwantes, H. O., Hagemann, F.: Untersuchungen zur Fruchtkörperbildung bei Lentinus tigrinus Bull. Ber. Dtsch. Bot. Ges. 78, 1. Generalversammlungsheft, (89)–(101) (1965).Google Scholar
  59. Sladký, Z., Tichý, V.: Stimulation of the formation of fruiting bodies of the fungus Lentinus tigrinus (Bull.) Fr. by growth regulators. Biol. Plant. (Prague) 16, 436–443 (1974).Google Scholar
  60. Streeter, S. G.: The influence of gravity on the direction of growth of Amanita. Bot. Gaz. 48, 414–426 (1909).CrossRefGoogle Scholar
  61. Szabó, L. G., Pozsár, B. L, Kota, M.: Cytokinin activity of the fruiting body of Coprinus micaceus Fr. Acta Agron. Acad. Sci. Hung. 19, 402–403 (1970).Google Scholar
  62. Takemaru, T., Kamada, T.: Basidiocarp development in Coprinus macrorhizus I. Induction of developmental variations. Bot. Mag. (Tokyo) 85, 51–57 (1972).CrossRefGoogle Scholar
  63. Turner, E. M.: Development of excised sporocarps of Agaricus bisporus and its control by CO2. Trans. Br. Mycol. Soc. 69, 183–186 (1977).CrossRefGoogle Scholar
  64. Uno, I., Ishikawa, T.: Chemical and genetical control of induction of monokaryotic fruiting bodies in Coprinus macrorhizus. Mol. Gen. Genet. 113, 228–239 (1971).CrossRefGoogle Scholar
  65. Uno, I., Ishikawa, T.: Purification and identification of the fruiting-inducing substances in Coprinus. J. Bacteriol. 113, 1240–1248 (1973a).PubMedGoogle Scholar
  66. Uno, I., Ishikawa, T.: Metabolism of adenosine 3′,5′-cyclic monophosphate and induction of fruiting bodies in Coprinus macrorhizus. J. Bacteriol. 113, 1249–1255 (1973b).PubMedGoogle Scholar
  67. Urayama, T.: Das Wuchshormon des Fruchtkörpers von Agaricus campestris L. (Vorläufige Mitteilung). Bot. Mag. (Tokyo) 69, 298–299 (1956).Google Scholar
  68. van den Ende, H.: Sexual Interactions in Plants. London: Academic Press 1976.Google Scholar
  69. Wong, W. M.: Distribution of endogenous amino acids and proteins during fruitbody development in Flammulina velutipes (Curt, ex Fr.) Sing. Ph.D. Thesis, Univ. of Saskatchewan, 169 pp. (1978).Google Scholar
  70. Wong, W. M., Gruen, H. E.: Changes in cell size and nuclear number during elongation of Flammulina velutipes fruitbodies. Mycologia 69, 899–913 (1977).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1982

Authors and Affiliations

  • Hans E. Gruen

There are no affiliations available

Personalised recommendations