Skip to main content

Spherical Tilings with Transitivity Properties

  • Conference paper
The Geometric Vein

Abstract

H. S. M. Coxeter’s work on regular and uniform polytopes is, perhaps, his best-known contribution to geometry. By central projection one can relate each of these polytopes to a tiling on a sphere, and the symmetry properties of the polytopes then lead naturally to various transitivity properties of the corresponding tilings. The main purpose of this paper is to classify all tilings on the 2-sphere with these transitivity properties (and not just those obtained from three-dimensional polytopes). Our results are exhibited in Tables 3 and 4. Here we enumerate all “types” of tilings whose symmetry groups are transitive on the tiles (isohedral tilings), on the edges (isotoxal tilings), or on the vertices (isogonal tilings). The word “type” is used here in the sense of “homeomeric type” for details of which we refer the reader to recent literature on the subjects of patterns and plane tilings, especially [18] and [20].

This material is based upon work supported by the National Science Foundation Grant No. MCS77-01629 A01.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brückner, M., Vielecke und Vielflache. Teubner, Leipzig 1900.

    MATH  Google Scholar 

  2. Brun, V., Some theorems on the partitioning of the sphere, inspired by virus research. (Norwegian, with summary in English) Nordisk Matem. Tidskrift 20 (1972), 87–91, 120.

    MathSciNet  Google Scholar 

  3. Buerger, M. J., Elementary Crystallography. John Wiley and Sons, New York-London-Sydney 1963.

    Google Scholar 

  4. Coxeter, H. S. M., Review of [22]. Math. Reviews 30 (1965), #3406.

    Google Scholar 

  5. Coxeter, H. S. M., Angels and devils. In The Mathematical Gardner, edited by D. A. Klarner. Prindle, Weber and Schmidt, Boston 1981.

    Google Scholar 

  6. Coxeter, H. S. M. and Moser, W. O. J., Generators and Relations for Discrete Groups. 3rd ed. Springer-Verlag, Berlin-Heidelberg-New York 1972.

    MATH  Google Scholar 

  7. Davies, H. L., Packings of spherical triangles and tetrahedra. In Proc. Colloq. on Convexity (Copenhagen 1965). Københavns Univ. Mat. Institut, Copenhagen 1967.

    Google Scholar 

  8. Delone, B. N., On regular partitions of spaces. (In Russian) Priroda 1963, No. 2, pp. 60–63.

    Google Scholar 

  9. Donnay, J. D. H., Hellner, E., and Niggli, A., Coordination polyhedra. Z. Kristallogr. 120 (1964), 364–374.

    Article  Google Scholar 

  10. Ernst, B., The Magic Mirror of M. C. Escher. Random House, New York, 1976.

    Google Scholar 

  11. Escher, M. C, The World of M. C. Escher. Abrams, New York 1970.

    Google Scholar 

  12. Fedorov, E. S., Elements of the Theory of Figures. (In Russian) Akad. Nauk, St. Peterburg 1885. Reprinted by Akad. Nauk SSSR, Moscow 1953.

    Google Scholar 

  13. Fleischner, H. and Imrich, W., Transitive planar graphs. Math. Slovaca 29 (1979), 97–105.

    MathSciNet  Google Scholar 

  14. Galiulin, R. V., Holohedral variants of simple crystal forms. (In Russian) Kristallografiya 23 (1978), 1125–1132.

    MathSciNet  MATH  Google Scholar 

  15. Grünbaum, B. and Shephard, G. C., The eighty-one types of isohedral tilings in the plane. Math. Proc. Cambridge Philos. Soc. 82 (1977), 177–196.

    Article  MathSciNet  MATH  Google Scholar 

  16. Grünbaum, B. and Shephard, G. C., The ninety-one types of isogonal tilings in the plane. Trans. Amer. Math. Soc. 242 (1978), 335–353.

    MathSciNet  MATH  Google Scholar 

  17. Grünbaum, B. and Shephard, G. C., Isotoxal tilings. Pacific J. Math. 78 (1978), 407–430.

    Google Scholar 

  18. Grünbaum, B. and Shephard, G. C., The homeomeric classification of tilings. C. R. Math. Reports, Acad. Sci. 1 (1978), 57–60.

    Google Scholar 

  19. Grünbaum, B. and Shephard, G. C., Incidence symbols and their applications. In Proc. Sympos. on Relations between Combinatorics and Other Parts of Mathematics, Columbus, Ohio 1978. Proc. Sympos. Pure Math. 34 (1979) 199–244.

    Google Scholar 

  20. Grünbaum, B. and Shephard, G. C., Tilings and Patterns. Freeman, San Francisco (to appear).

    Google Scholar 

  21. Heesch, H., Über Kugelteilung. Comment. Math. Helv. 6 (1933-34), 144–153.

    Article  MathSciNet  MATH  Google Scholar 

  22. Heppes, A., Isogonale sphärische Netze. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 7 (1964), 41–48.

    MathSciNet  MATH  Google Scholar 

  23. Hess, E., Einleitung in die Lehre von der Kugelteilung. Teubner, Leipzig 1883.

    Google Scholar 

  24. Killingbergtrø, H. G., Remarks on Brun’s spherical tessellations. (Norwegian, with summary in English) Nordisk. Matem. Tidskrift 24 (1976), 53–55, 75.

    Google Scholar 

  25. Niggli, A., Zur Topologie, Metrik und Symmetric der einfachen Kristallformen. Schweiz. Mineral, und Pedograph. Mitt. 43 (1963), 49 58.

    Google Scholar 

  26. Ozawa, T. and Akaike, S., Uniform plane graphs. Mem. Fac. Engin. Kyoto Univ. 39 (1977), 495–503.

    MathSciNet  Google Scholar 

  27. Pawley, G. S., Plane groups on polyhedra. Acta Cryst. 15 (1962), 49–53.

    Article  MathSciNet  Google Scholar 

  28. Robertson, S. A. and Carter, S., On the Platonic and Archimedean solids. J. London Math. Soc. (2) 2 (1970), 125–132.

    Article  MathSciNet  MATH  Google Scholar 

  29. Sakane, I., Natural History of Games. (In Japanese) Asahi-Shinbun, Tokyo 1977.

    Google Scholar 

  30. Schattschneider, D. and Walker, W., M. C. Escher Kaleidocycles. Ballantine, New York 1977.

    Google Scholar 

  31. Schlegel, V., Theorie der homogen zusammengesetzten Raumgebilde. Nova Acta Leop. Carol. 44 (1883), 343–459.

    Google Scholar 

  32. Sommerville, D. M. Y., Semi-regular networks of the plane in absolute geometry. Trans. Roy. Soc. Edin. 41 (1905), 725–747.

    MATH  Google Scholar 

  33. Sommerville, D. M. Y., Division of space by congruent triangles and tetrahedra. Proc. Roy. Soc. Edin. 43 (1922-23), 85–116.

    Google Scholar 

  34. Sommerville, D. M. Y., Isohedral and isogonal generalizations of the regular polyhedra. Proc. Roy. Soc. Edin. 52 (1931-32), 251–263.

    Google Scholar 

  35. Zelinka, B., Finite vertex-transitive planar graphs of the regularity degree four or five. Mat. Cas. 25 (1975), 271–280.

    MathSciNet  MATH  Google Scholar 

  36. Zelinka, B., Finite vertex-transitive planar graphs of the regularity degree three. ćasop. Pěstov. Mat. 102 (1977), 1–9.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag New York Inc.

About this paper

Cite this paper

Grünbaum, B., Shephard, G.C. (1981). Spherical Tilings with Transitivity Properties. In: Davis, C., Grünbaum, B., Sherk, F.A. (eds) The Geometric Vein. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5648-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5648-9_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5650-2

  • Online ISBN: 978-1-4612-5648-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics