Generation of Linear Groups

  • William M. Kantor


Let G be a finite, primitive subgroup of GL(V)= GL(n, D), where V is an n-dimensional vector space over the division ring D. Assume that G is generated by “nice” transformations. The problem is then to try to determine (up to GL(V)-conjugacy) all possibilities for G. Of course, this problem is very vague. But it is a classical one, going back 150 years, and yet very much alive today. The purpose of this paper is to discuss both old and new results in this area, and in particular to indicate some of its history. Our emphasis will be on especially geometric situations, rather than on representation-theoretic ones.


Simple Group Maximal Subgroup Linear Group Division Ring Chevalley Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amitsur, S. A. (1955), Finite subgroups of division rings. TAMS 80, 361–386.MathSciNetMATHCrossRefGoogle Scholar
  2. Aschbacher, M. (1977), A characterization of Chevalley groups over fields of odd order. Ann. of Math. (2) 106, 353–468.MathSciNetMATHCrossRefGoogle Scholar
  3. Bagnera, G. (1905), I gruppi finiti di transforminazioni lineari dello spazio che contengono omologie. Rend. Circ. Mat. Palermo 19, 1–56.MATHCrossRefGoogle Scholar
  4. Blichfeldt, H. F. (1904), On the order of linear homogeneous groups (second paper). TAMS 5, 310–325.MathSciNetMATHGoogle Scholar
  5. Blichfeldt, H. F. (1905), The finite, discontinuous primitive groups of collineations in four variables. Math. Ann. 60, 204–231.MathSciNetMATHCrossRefGoogle Scholar
  6. Blichfeldt, H. F. (1907), The finite discontinuous primitive groups of collineations in three variables. Math. Ann. 63, 552–572.MathSciNetMATHCrossRefGoogle Scholar
  7. Blichfeldt, H. F. (1917), Finite Collineation Groups. University of Chicago Press, Chicago.Google Scholar
  8. Bloom, D. M. (1967), The subgroups of PSL(3,q) for odd q. TAMS 111, 150–178.Google Scholar
  9. Bourbaki, N. (1968), Groupes et Algèbres de Lie, Chapters IV, V, VI. Hermann, Paris.Google Scholar
  10. Brauer, R. (1967), Über endliche lineare Gruppen von Primzahlgrad. Math. Ann. 169, 73–96.MathSciNetMATHCrossRefGoogle Scholar
  11. Burnside, W. (1894), On a class of groups defined by congruences. Proc. LMS 25, 113–139.MATHGoogle Scholar
  12. Burnside, W. (1895), On a class of groups defined by congruences. Proc. LMS 26, 58–106.MATHGoogle Scholar
  13. Burnside, W. (1912), The determination of all groups of rational linear substitutions of finite order which contain the symmetric group in the variables. Proc. LMS (2) 10, 284–308.CrossRefGoogle Scholar
  14. Cameron, P. J. and Kantor, W. M. (1979), 2-transitive and antiflag transitive collineation groups of finite projective spaces. J. Algebra, 60, 384–422.MathSciNetMATHCrossRefGoogle Scholar
  15. Carter, R. W. (1972), Simple Groups of Lie Type. Wiley, London-New York-Sydney-Toronto.MATHGoogle Scholar
  16. Chevalley, C. (1955), Sur certains groupes simples. Tohoku Math. J. 7, 14–66.MathSciNetMATHCrossRefGoogle Scholar
  17. Cohen, A. M. (1976), Finite complex reflection groups. Ann. Scient. Ec. Norm. Sup. (4) 9, 379–436.MATHGoogle Scholar
  18. Cohen, A. M. (1980), Finite quaternionic reflection groups. J. Algebra 64, 293–324.MathSciNetMATHCrossRefGoogle Scholar
  19. Conway, J. H. (1971), Three lectures on exceptional groups. In Finite Simple Groups, edited by M. B. Powell and G. Higman. Academic Press, New York, pp. 215-247.Google Scholar
  20. Cooperstein, B. N. (1978), Minimal degree for a permutation representation of a classical group. Israel J. Math. 30, 213–235.MathSciNetMATHCrossRefGoogle Scholar
  21. Cooperstein, B. N. (1979), The geometry of root subgroups in exceptional groups I, Geom. Dedicata 8, 317–381.MathSciNetMATHCrossRefGoogle Scholar
  22. Cooperstein, B. N. (1981), Subgroups of exceptional groups of Lie type generated by long root elements, I, II. J. Algebra 70, 270–282, 283–298.MathSciNetMATHCrossRefGoogle Scholar
  23. Coxeter, H. S. M. (1948), Regular Polytopes. Methuen, London.MATHGoogle Scholar
  24. Coxeter, H. S. M. (1957), Groups generated by unitary reflections of period two. Can. J. Math. 9, 243–272.MathSciNetMATHCrossRefGoogle Scholar
  25. Coxeter, H. S. M. (1967), Finite groups generated by unitary reflections. Abh. Hamburg 31, 125–135.MathSciNetMATHCrossRefGoogle Scholar
  26. Coxeter, H. S. M. (1974), Regular Complex Polytopes. Cambridge University Press, Cambridge.MATHGoogle Scholar
  27. Coxeter, H. S. M. and Todd, J. A. (1953), An extreme duodenary form. Can. J. Math. 5, 384–392.MathSciNetMATHCrossRefGoogle Scholar
  28. Curtis, C. W., Kantor, W. M., and Seitz, G. M. (1976), The 2-transitive permutation representations of the finite Chevalley groups. TAMS 218, 1–59.MathSciNetMATHGoogle Scholar
  29. Delsarte, P., Goethals, J. M., and Seidel, J. J. (1975), Bounds for systems of lines, and Jacobi polynomials. Philips Res. Rep. 30, 91–105.MATHGoogle Scholar
  30. Delsarte, P., Goethals, J. M., and Seidel, J. J. (1977), Spherical codes and designs. Geom. Ded. 6, 363–388.MathSciNetMATHCrossRefGoogle Scholar
  31. Dempwolff, U. (1978), Some subgroups of GL(n,2) generated by involutions, I. J. Algebra 54, 332–352.MathSciNetMATHCrossRefGoogle Scholar
  32. Dempwolff, U. (1979), Some subgroups of GL(n,2) generated by involutions, II. J. Algebra 56, 255–261.MathSciNetMATHCrossRefGoogle Scholar
  33. Dickson, L. E. (1900), Linear Groups, with an Exposition of the Galois Field Theory. Reprinted, Dover, New York, 1958.MATHGoogle Scholar
  34. Dickson, L. E. (1905), Determination of the ternary modular linear groups. Amer. J. Math. 27, 189–202.MathSciNetMATHCrossRefGoogle Scholar
  35. DiMartino, L. and Wagner, A. (1981), The irreducible subgroups of PSL(V 5,q), where q is odd. Resultate der Math.Google Scholar
  36. Doro, S. (1975), On finite linear groups in nine and ten variables. Thesis, Yale University.Google Scholar
  37. Feit, W. (1976), On finite linear groups in dimension at most 10. In Proc. Conf Finite Groups, edited by W. R. Scott and F. Gross. Academic Press, New York, pp. 397–407.Google Scholar
  38. Fischer, B. (1969), Finite groups generated by 3-transpositions. Preprint. University of Warwick.Google Scholar
  39. Galois, E. (1846), Oeuvres mathématiques, J. de Math. 11, 381–444.Google Scholar
  40. Gierster, J. (1881), Die Untergruppen der Galois’schen Gruppe der Modulargleichungen für den Fall eine primzahligen Transformationsgrades. Math. Ann. 18, 319–365.MathSciNetCrossRefGoogle Scholar
  41. Hall, Jr., M. and Wales, D. B. (1968), The simple group of order 604,800. J. Algebra 9, 417–450.MathSciNetMATHCrossRefGoogle Scholar
  42. Hamill, C. M. (1951), On a finite group of order 6,531,840. Proc. LMS (2) 52, 401–454.MathSciNetMATHCrossRefGoogle Scholar
  43. Hartley, E. M. (1950), Two maximal subgroups of a collineation group in five dimensions. Proc. Camb. Phil. Soc. 46, 555–569.MathSciNetMATHCrossRefGoogle Scholar
  44. Hartley, R. W. (1926), Determination of the ternary linear collineation groups whose coefficients lie in the GF(2n). Ann. of Math. (2) 27, 140–158.MathSciNetCrossRefGoogle Scholar
  45. Hazewinkel, M., Hesselink, W., Siersma, D., and Veldkamp, F. D. (1977), The ubiquity of Coxeter-Dynkin diagrams (an introduction to the A-D-E problem). Nieuw. Archief (3) 25, 257–307.MathSciNetMATHGoogle Scholar
  46. Ho, C. Y. (1976), Chevalley groups of odd characteristic as quadratic pairs. J. Algebra 41, 202–211.MathSciNetMATHCrossRefGoogle Scholar
  47. Hoggar, S. G. (1978), Bounds for quaternionic line systems and reflection groups. Math. Scand. 43, 241–249.MathSciNetMATHGoogle Scholar
  48. Huffman, W. C. (1975), Linear groups containing an element with an eigenspace of codimension two. J. Algebra 34, 260–287.MathSciNetMATHCrossRefGoogle Scholar
  49. Huffman, W. C. and Wales, D. B. (1975), Linear groups of degree n containing an element with exactly n — 2 equal eigenvalues. Linear and Multilinear Algebra 3, 53–59.MathSciNetCrossRefGoogle Scholar
  50. Huffman, W. C. and Wales, D. B. (1976), Linear groups of degree eight with no elements of order 7. Ill. J. Math. 20, 519–527.MathSciNetMATHGoogle Scholar
  51. Huffman, W. C. and Wales, D. B. (1977), Linear groups containing an involution with two eigenvalues — 1. J. Algebra 45, 465–515.MathSciNetMATHCrossRefGoogle Scholar
  52. Huffman, W. C. and Wales, D. B. (1978), Linear groups of degree nine with no elements of order seven. J. Algebra 51, 149–163.MathSciNetMATHCrossRefGoogle Scholar
  53. Huppert, B. (1967), Endliche Gruppen I. Springer, Berlin-Heidelberg-New York.MATHGoogle Scholar
  54. Jordan, C. (1870), Traité des Substitutions et des Équations Algébriques. Gauthier-Villars, Paris.Google Scholar
  55. Jordan, C. (1878), Mémoire sur les équations différentielles linéaires à intégrate algébrique. J. Reine Angew. Math. 84, 89–215.CrossRefGoogle Scholar
  56. Jordan, C. (1879), Sur la détermination des groupes d’ordre fini contenus dans le group linéaire. Atti Accad. Napoli 8, 1–41.Google Scholar
  57. Kantor, W. M. (1979a), Subgroups of classical groups generated by long root elements. TAMS 248, 347–379.MathSciNetMATHCrossRefGoogle Scholar
  58. Kantor, W. M. (1979b), Permutation representations of the finite classical groups of small degree or rank. J. Algebra 60, 158–168.MathSciNetMATHCrossRefGoogle Scholar
  59. Kantor, W. M. (1980), Linear groups containing a Singer cycle. J. Algebra 62, 232–234.MathSciNetMATHCrossRefGoogle Scholar
  60. Kantor, W. M., and Liebler, R. A. (1982), The rank 3 permutation representations of the finite classical groups. TAMS (to appear).Google Scholar
  61. Klein, F. (1876), Ueber binare Formen mit linearen Transformationen in sich selbst. Math. Ann. 9, 183–208.CrossRefGoogle Scholar
  62. Klein, F. (1879), Ueber die Transformationen siebenter Ordnung der elliptischen Functionen. Math. Ann. 14, 428–471.CrossRefGoogle Scholar
  63. Klein, F. (1884), Vorlesungen über das Jkosaeder und die Auflösung der Gleichungen vom fünften Grade. Teubner, Leipzig.Google Scholar
  64. Lindsay, II, J. H., (1971), Finite linear groups of degree six. Can. J. Math. 23, 771–790.CrossRefGoogle Scholar
  65. McLaughlin, J. (1967), Some groups generated by transvections. Arch. Math. 18, 364–368.MathSciNetMATHCrossRefGoogle Scholar
  66. McLaughlin, J. (1969), Some subgroups of SL n(F 2). Ill. J. Math. 13, 108–115.MathSciNetMATHGoogle Scholar
  67. McLaughlin, J. (1969), A simple group of order 898,128,000. In Theory of Finite Groups, edited by R. Brauer and C.-H. San. Benjamin, New York, pp. 109–111.Google Scholar
  68. Mitchell, H. H. (191la), Determination of the ordinary and modular ternary linear groups. TAMS 12, 207–242.Google Scholar
  69. Mitchell, H. H. (1911b), Note on collineation groups. Bull. AMS 18, 146–147.MATHCrossRefGoogle Scholar
  70. Mitchell, H. H. (1913), Determination of the finite quaternary linear groups. TAMS 14, 123–142.MATHCrossRefGoogle Scholar
  71. Mitchell, H. H. (1914a), Determination of all primitive collineation groups in more than four variables which contain homologies. Amer. J. Math. 36, 1–12.MathSciNetMATHCrossRefGoogle Scholar
  72. Mitchell, H. H. (1914b), The subgroups of the quaternary abelian linear groups. TAMS 15, 379–396.MATHCrossRefGoogle Scholar
  73. Mitchell, H. H. (1935), Linear groups and finite geometries. Amer. Math. Monthly 42, 592–603.MathSciNetCrossRefGoogle Scholar
  74. Moore, E. H. (1904), The subgroups of the generalized finite modular group. Decennial Publications of the University of Chicago 9, 141–190.Google Scholar
  75. Mwene, B. (1976), On the subgroups of the group PSL 4(2m). J. Algebra 41, 79–107.MathSciNetMATHCrossRefGoogle Scholar
  76. Mwene, B. (1982), On some subgroups of PSL(4,q) q odd.Google Scholar
  77. Odlyzko, A. M. and Sloane, N. J. A. (1979), New bounds on the number of unit spheres that can touch a unit sphere in n dimensions, J. Comb. Theory (A) 26, 210–214.MathSciNetMATHCrossRefGoogle Scholar
  78. Patton, W. H. (1972), The minimum index for subgroups in some classical groups: a generalization of a theorem of Galois. Thesis, University of Illinois at Chicago Circle.Google Scholar
  79. Piper, F. C. (1965), Collineation groups containing elations, I. Math. Z. 89, 181–191.MathSciNetMATHCrossRefGoogle Scholar
  80. Piper, F. C. (1966a), Collineation groups containing elations, II. Math. Z. 92, 281–287.MathSciNetMATHCrossRefGoogle Scholar
  81. Piper, F. C. (1966b), On elations of finite projective spaces of odd order. JLMS 41, 641–648.MathSciNetMATHGoogle Scholar
  82. Piper, F. C. (1968), On elations of finite projective spaces of even order. JLMS 43, 459–464.MathSciNetMATHGoogle Scholar
  83. Piper, F. C. (1973), On elations of finite projective spaces. Geom. Ded. 2, 13–27.MathSciNetMATHCrossRefGoogle Scholar
  84. Seitz, G. M. (1979), Subgroups of finite groups of Lie type. J. Algebra 61, 16–27.MathSciNetMATHCrossRefGoogle Scholar
  85. Seitz, G. M. (1982), Generation of finite groups of Lie type. TAMS (to appear).Google Scholar
  86. Serezkin, V. N. (1976), Reflection groups over finite fields of characteristic p > 5. Soviet Math. Dokl. 17, 478–480. (Correction. Dokl. Akad. Nauk SSSR 237 (1977), 504 (Russian).)MATHGoogle Scholar
  87. Shephard, G. C. (1952), Regular complex polytopes. Proc. LMS (3) 2, 82–97.MathSciNetMATHCrossRefGoogle Scholar
  88. Shephard, G. C. (1953), Unitary groups generated by reflections. Can. J. Math. 5, 364–383.MathSciNetMATHCrossRefGoogle Scholar
  89. Shephard, G. C. and Todd, J. A. (1954), Finite unitary reflection groups. Can. J. Math. 6, 274–304.MathSciNetMATHCrossRefGoogle Scholar
  90. Singer, J. (1938), A theorem in finite projective geometry and some applications to number theory. TAMS 43, 377–385.CrossRefGoogle Scholar
  91. Thompson, J. G. (1970), Quadratic pairs. Actes Cong. Intern. Math. 1, 375–376.Google Scholar
  92. Tits, J. (1966), Classification of algebraic semi-simple groups. AMS Proc. Symp. Pure Math. 9, 33–62.MathSciNetGoogle Scholar
  93. Tits, J. (1974), Buildings of Spherical Type and Finite BN-pairs. Springer Lecture Notes 386.Google Scholar
  94. Valentiner, H. (1889), De endelige Transformations-Gruppers Theori. Kjób. Skrift. (6) 5, 64–235.Google Scholar
  95. van der Waerden, B. L. (1935), Gruppen von Linearen Transformationen. Springer, Berlin. Reprinted: Chelsea, New York, 1948.MATHGoogle Scholar
  96. Wagner, A. (1974), Groups generated by elations. Abh. Hamburg 41, 190–205.MATHCrossRefGoogle Scholar
  97. Wagner, A. (1978), Collineation groups generated by homologies of order greater than 2. Geom. Ded. 7, 387–398.MATHCrossRefGoogle Scholar
  98. Wagner, A. (1979), The subgroups of PSL(5,2a). Resultate der Math. 1, 207–226.Google Scholar
  99. Wagner, A. (1980-1981), Determination of finite primitive reflections groups over an arbitrary field of characteristic not two, I, II, III Geom. Dedicata 9, 239–253; 10, 191–203, 475–523.MathSciNetMATHCrossRefGoogle Scholar
  100. Wales, D. B. (1969), Finite linear groups of degree seven I. Can. J. Math. 21, 1042–1056.MathSciNetMATHCrossRefGoogle Scholar
  101. Wales, D. B. (1970), Finite linear groups of degree seven II, Pacif J. Math. 34, 207–235.MathSciNetMATHGoogle Scholar
  102. Wales, D. B. (1978), Linear groups of degree n containing an involution with two eigenvalues — 1, II. J. Algebra 53, 58–67.MathSciNetMATHCrossRefGoogle Scholar
  103. Wiman, A. (1896), Ueber eine einfache Gruppe von 360 ebenen Collineationen. Math. Ann. 47, 531–556.MathSciNetMATHCrossRefGoogle Scholar
  104. Wiman, A. (1899a), Bestimmung alle Untergruppen einer doppelt unendlichen Reihe von einfachen Gruppen. Bihang till K. Svenska Vet.-Akad. Handl 25, 1–47.Google Scholar
  105. Wiman, A. (1899b), Endliche Gruppen linearer Substitutionen. IB3f in Encyk. Math. Wiss. Google Scholar
  106. Zalesskii, A. E. (1976), A classification of the finite irreducible linear groups of degree 5 over a field of characteristic other than 0,2,3,5 (Russian). Dokl. Akad. Nauk BSSR 20, 773–775, 858.MathSciNetMATHGoogle Scholar
  107. Zalesskii, A. E. (1977), Classification of finite linear groups of degree 4 and 5 over fields of characteristic 2. Dokl. Akad. Nauk BSSR 21, 389–392, 475 (Russian).MathSciNetMATHGoogle Scholar
  108. Zalesskii, A. E. and Serezkin, V. N. (1976), Linear groups generated by transvections. Math. USSR Izvestija 10, 25–46.CrossRefGoogle Scholar
  109. Zalesskii, A. E. and Serezkin, V. N. (1977), Linear groups which are generated by pseudoreflections. Izv. Akad. Nauk BSSR, 9–16 (Russian).Google Scholar
  110. Zalesskii, A. E. and Serezkin, V. N. (1980), Finite linear groups generated by reflections. Izv. Akad. Nauk SSSR 44, 1279–1307 (Russian).MathSciNetGoogle Scholar
  111. Zalesskii, A. E. and Suprenenko, I. D. (1978), Classification of finite irreducible linear groups of degree 4 over a field of characteristic p > 5. Izv. Akad. Nauk BSSR, 1978, 9–15 (Russian).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • William M. Kantor
    • 1
  1. 1.Department of MathematicsUniversity of OregonEugeneUSA

Personalised recommendations