Skip to main content

The Importance of Understanding Phytoplankton Life Strategies in the Design of Enclosure Experiments

  • Chapter
Marine Mesocosms

Abstract

Enclosing a parcel of water in an experimental container gives that water column integrity and prevents further mixing with the surrounding water. Assuming that nutrients are adequate and that the container is kept in the light, a phytoplankton bloom will develop and a succession of phytoplankton species will follow. The succession observed in containers is a miniature and typically an accelerated version of the succession commonly observed in the marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • P. K. Bienfang 1981. Sinking rates of heterogeneous, temperate phytoplankton populations. J. Plankton Res. 3: 235–253.

    Article  CAS  Google Scholar 

  • R. W. Eppley and J. D. H. Strickland. 1968. Kinetics of marine phytoplankton growth. Adv. Microbial. Sea. 1: 23–62.

    CAS  Google Scholar 

  • R. W. Eppley P. Koeller and G. T. Wallace Jr. 1978. Stirring influences the phytoplankton species composition within enclosed columns of coastal seawater. J. Exp. Mar. BioI. Ecol. 32: 219–239.

    Article  CAS  Google Scholar 

  • W.Greve, and T. R. Parsons. 1977. Photosynthesis and fish production: Hypothetical effects of climatic change and pollution. Helgol. Wiss. Meeresunters. 30: 666–672.

    Article  Google Scholar 

  • G. D. Grice M. R. Reeve P. Koeller and D. W. Menzel. 1977. The use of large volume, transparent, enclosed sea-surface water columns in the study of stress on plankton ecosystems. Helgol. Wiss. Meeresunters. 30: 118–133.

    Google Scholar 

  • Grice, G. D., R. P. Harris, M. R. Reeve, J. F. Heinbokel, and C. O. Davis. 1980. Large scale enclosed water-column ecosystems: An overview of Foodweb I, the final CEPEX experiment. J. Mar. Biol. Assoc. U.K. 60: 401-414.

    Google Scholar 

  • Gucluer, S. M., and M. G. Gross. 1964. Recent marine sediments in Saanich Inlet a stagnant marine basin. Limnol. Oceanogr. 9: 359-376.

    Google Scholar 

  • Harrison, P. J., and C. O. Davis. 1979. The use of outdoor phytoplankton continuous culture to analyze factors influencing species selection. J. Exp. Mar. BioI. Ecol. 41: 9-23.

    Google Scholar 

  • Kovala, P. E., and J. D. Larrance. 1966. Computation of phytoplankton cell numbers, cell volume, cell surface, and plasma volume per liter, from microscopical counts. Univ. Wash., Dept. Oceanogr., Spec. Rep. No. 38. Seattle, Wash.

    Google Scholar 

  • Margalef, R. 1962. Succession in marine populations. Adv. Front. Pl. Sci. New Delhi 2: 137-188.

    Google Scholar 

  • Menzel, D. W., and J. Case. 1977. Concept and design: Controlled ecosystem pollution experiment. Bull. Mar. Sci. 27: 1-7.

    Google Scholar 

  • Parsons, T. R., P. J. Harrison, and R. Waters. 1978. An experimental simulation of changes in diatom and flagellate blooms. J. Exp. Mar. Biol. Ecol. 32: 285-294.

    Google Scholar 

  • R. D. Pingree P. M. Holligan and R. N. Head. 1977. Survival of dinoflagellate blooms in the Western English Channel. Nature 265: 266–269.

    Article  Google Scholar 

  • J. H. Steele and B. W. Frost. 1977. The structure of plankton communities. Philos. Trans. R. Soc. Land. B BioI. Sci. 280: 485–534.

    Article  Google Scholar 

  • R. R.Strathmann 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12: 411–418.

    Article  CAS  Google Scholar 

  • M. Takahashi D. L. Seibert and W. H. Thomas. 1977. Occasional blooms of phytoplankton during summer in Saanich Inlet, B.C., Canada. Deep-Sea Res. 24: 775–780.

    Article  Google Scholar 

  • W. H.Thomas and D. L. R. Seibert. 1977. Effects of copper on the dominance and the diversity of algae: Controlled ecosystem pollution experiment. Bull. Mar. Sci. 27: 23–33.

    CAS  Google Scholar 

  • H. Uterrnohl 1958. Zur Vervollkommung der quantitativen Phytoplankton Methodik.lnternat. Ver. Theor. Angew. Limnol. 9: 1–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Davis, C.O. (1982). The Importance of Understanding Phytoplankton Life Strategies in the Design of Enclosure Experiments. In: Grice, G.D., Reeve, M.R. (eds) Marine Mesocosms. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5645-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5645-8_24

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5647-2

  • Online ISBN: 978-1-4612-5645-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics