Advertisement

Effects of High Altitude (Low Arterial \({{\text{P}}_{{O_2}}}\)) and of Displacements of the Oxygen Dissociation Curve of Blood on Peripheral O2 Extraction and \({{\text{P}}_{{O_2}}}\)

  • Jochen Duhm
Conference paper
Part of the Topics in Environmental Physiology and Medicine book series (TEPHY)

Abstract

The rise in 2,3-diphosphoglycerate (2,3-DPG) content of human erythrocytes occurring at high altitude (caused by the rise in blood and red cell pH, respectively, and by the increased mean desaturation of hemoglobin) and the resulting right-hand shift of the oxyhemoglobin dissociation curve of blood serve to counterbalance the left-hand shift resulting from the hypoxiainduced respiratory alkalosis (mediated by the Bohr eifect(s) of hemoglobin). Accordingly, the main role of the 2,3-DPG change at high altitude (and also in acid-base disorders) is to maintain the oxygen dissociation curve of human blood at (or near) its original position. This conclusion seems to be valid for man resting at altitudes up to 7000 m. The changes occurring at higher altitudes and during a rapid climb to a summit above 8000 m remain to be investigated.

Keywords

High Altitude Dissociation Curve Oxygen Affinity Respiratory Alkalosis Oxygen Dissociation Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aono, M., Harkness, D. R., Flores, A., and Gollan, F.: Oxygen transport and delivery in rabbits treated with cyanate. Life Sci. 15: 1083, 1974.PubMedCrossRefGoogle Scholar
  2. 2.
    Aste-Salazar, H. and Hurtado, A.: The affinity of hemoglobin for oxygen at sea level and at high altitudes. Am. J. Physiol. 142: 733, 1944.Google Scholar
  3. 3.
    Bakker, J. C.: 2,3-Diphosphoglycerate, Haemoglobin and O2 Release to Tissues. Amsterdam, Aacademisch Proefschrift, 1977.Google Scholar
  4. 4.
    Bakker, J. C., Gortmaker, G. C., deVriesvanRossen, A., and Offerijns, F. G. J.: The influence of the position of the oxygen dissociation curve on oxygen-dependent functions of the isolated perfused rat liver. III. Studies at different levels of anaemic hypoxia. Pflugers Arch. 368: 63, 1977.PubMedCrossRefGoogle Scholar
  5. 5.
    Bakker, J. C., Gortmaker, G. C., and Offerijns, F. G. J.: The influence of the position of the oxygen dissociation curve on oxygen-dependent functions of the isolated perfused rat liver. II. Studies at different levels of hypoxia induced by decrease of blood flow rate. Pflugers Arch. 366: 45, 1976.PubMedCrossRefGoogle Scholar
  6. 6.
    Bakker, J. C., Gortmaker, G. C., Vrolijk, A. C. M., and Offerijns, F. G. J.: The influence of the position of the oxygen dissociation curve on oxygen-dependent functions of the isolated perfused rat liver. I. Studies at different levels of hypoxic hypoxia. Pflugers Arch. 362: 21, 1976.PubMedCrossRefGoogle Scholar
  7. 7.
    Bartels, H. and Baumann, R.: Respiratory function of hemoglobin. Int. Rev. Physiol. 14: 107, 1977.PubMedGoogle Scholar
  8. 8.
    Bauer, C.: On the respiratory function of haemoglobin. Rev. Physiol. Biochem. Pharmacol. 70: 1, 1974.PubMedCrossRefGoogle Scholar
  9. 9.
    Bellingham, A. J.: Hemoglobins with altered oxygen affinity. Br. Med. Bull. 32: 234, 1976.PubMedGoogle Scholar
  10. 10.
    Bellingham, A. J., Detter, J. C., and Lenfant, C.: Regulatory mechanisms of hemoglobin oxygen affinity in acidosis and alkalosis. J. Clin. Invest. 50: 700, 1971.PubMedCrossRefGoogle Scholar
  11. 11.
    Brewer, G. J. and Eaton, J. W.: Erythrocyte metabolism: interaction with oxygen transport. Science 171: 1205, 1971.PubMedCrossRefGoogle Scholar
  12. 12.
    Bromberg, P. A.: Cellular cyanosis and the shifting sigmoid: the blood oxygen dissociation curve. Am. J. Med. Sci. 260: 1, 1970.PubMedCrossRefGoogle Scholar
  13. 13.
    Charache, S. and Murphy, E. A.: Is placental oxygen transport normal in carriers of high affinity hemoglobins? In Labie, D., Poyart, C., and Rose, J. (eds.): Molecular Interactions of Hemoglobin. Paris, Editions INSERM, 1978, pp. 285–294.Google Scholar
  14. 14.
    Dempsey, J. A., Thompson, J. M., Forster, H. V., Cerny, F. C., and Chosy, L. W.: HbO2 dissociation in man during prolonged work in chronic hypoxia. J. Appl. Physiol. 38: 1022, 1975.PubMedGoogle Scholar
  15. 15.
    Duhm, J.: Effects of 2,3-diphosphoglycerate and other organic phosphate compounds on the oxygen affinity and intracellular pH of human erythrocytes. Pflügers Arch. 326: 341, 1971.PubMedCrossRefGoogle Scholar
  16. 16.
    Duhm, J.: 2,3-Diphosphoglycerate metabolism of erythrocytes and oxygen transport function of blood. In Gerlach, E., Moser, K., Deutsch, E., and Wilmanns, W. (eds.): Erythrocytes, Thrombocytes, Leukocytes. Recent Advances in Membrane and Metabolic Research. Stuttgart, Thieme, 1973, pp. 149–157.Google Scholar
  17. 17.
    Duhm, J.: 2,3-DPG-induced displacements of the oxyhemoglobin dissociation curve of blood: mechanisms and consequences. In Bicher, H. I. and Bruley, D. F. (eds.): Oxygen Transport to Tissue. Adv. Exp. Med. Biol. 37A: 179, 1973.Google Scholar
  18. 18.
    Duhm, J.: Studies on 2,3-diphosphoglycerate: effects on hemoglobin, glycolysis, and on buffering properties of human erythrocytes. In Brewer, G. (ed.): Erythrocyte Structure and Function. Prog. Clin. Biol. Res. 1:167, 1975.Google Scholar
  19. 19.
    Duhm, J. and Gerlach, E.: On the mechanisms of the hypoxia-induced increase of 2,3-diphosphoglycerate in erythrocytes. Studies on rat erythrocytes in vivo and on human erythrocytes in vitro. Pflügers Arch. 326: 254, 1971.PubMedCrossRefGoogle Scholar
  20. 20.
    Duhm, J. and Gerlach, E.: Metabolism and function of 2,3-diphosphoglycerate in red blood cells. In Greenwalt, T. and Jamieson, G. A. (eds.): The Human Red Cell in Vitro. New York, Grune & Stratton, 1974, pp. 111–148.Google Scholar
  21. 21.
    Duvelleroy, M. A., Mehmel, H., and Laver, M. B.: Hemoglobin-oxygen equilibrium and coronary blood flow: an analog model. J. Appl. Physiol. 35: 480, 1973.PubMedGoogle Scholar
  22. 22.
    Eaton, J. W., Brewer, G. J., and Grover, R. F.: Role of red cell 2,3-diphosphoglycerate in the adaptation of man to altitude. J. Lab. Clin. Med. 73: 603, 1969.PubMedGoogle Scholar
  23. 23.
    Eaton, J. W., Skelton, T. D., and Berger, E.: Survival at extreme altitude: protective effect of increased hemoglobin-oxygen affinity. Science 183: 743, 1974.PubMedCrossRefGoogle Scholar
  24. 24.
    Garby, L. and Meldon, J.: The Respiratory Function of Blood. Topics in Hematology. New York, Plenum Medical Books, 1977.Google Scholar
  25. 25.
    Guy, J. T., Bromberg, P. A., Metz, E. N., Ringle, R., and Balcerzak, S. P.: Oxygen delivery following transfusion of stored blood. I. Normal rats. J. Appl. Physiol. 37: 60, 1974.PubMedGoogle Scholar
  26. 26.
    Hall, F. G., Dill, D. B., and Guzman Barron, E. S.: Comparative physiology in high altitudes. J. Cell. Comp. Physiol. 8: 301, 1936.CrossRefGoogle Scholar
  27. 27.
    Hebbel, R. P., Eaton, J. W., Kronenberg, R. S., Zanjani, R. D., Moore, L. G., and Berger, E. M.: Human llamas. Adaptation to altitude in subjects with high hemoglobin oxygen affinity. J. Clin. Invest. 62: 593, 1978.PubMedCrossRefGoogle Scholar
  28. 28.
    Jacobasch, G., Minakami, S., and Rapoport, S. M.: Glycolysis of the erythrocyte. In Yoshikawa, H. and Rapoport, S. M. (eds.): Cellular and Molecular Biology of Erythrocytes. Tokyo, University of Toyko Press, 1974, pp. 55–92.Google Scholar
  29. 29.
    Lenfant, C.: Red-cell function: theoretical considerations and physiological aspects. In Chaplin, H., Jr., Jaffe, E. R., Lenfant, C., and Valen, C. R. (eds.): Preservation of Red Cells. Washington, D. C., Nat. Acad. Sciences, 1973, pp. 57–66.Google Scholar
  30. 30.
    Lenfant, C. and Sullivan, K.: Adaptation to altitude. N. Engl. J. Med. 284: 1298, 1971.PubMedCrossRefGoogle Scholar
  31. 31.
    Lenfant, C., Torrance, J., English, E., Finch, C. A., Reynafarje, C., Ramos, J., and Faura, J.: Effect of altitude on oxygen binding by hemoglobin and organic phosphate levels. J. Clin. Invest. 47: 2652, 1968.PubMedCrossRefGoogle Scholar
  32. 32.
    Lenfant, C., Torrance, J. D., and Reynafarje, C.: Shift of the O2-Hb dissociation curve at altitude: mechanism and effect. J. Appl. Physiol. 30: 625, 1971.PubMedGoogle Scholar
  33. 33.
    Lichtman, M. A., Cohen, J., Young, J. A., Whitbeck, A. A., and Murphy, M.: The relationship between arterial oxygen flow rate, oxygen binding by hemoglobin, and oxygen utilization after myocardial infarction. J. Clin. Invest. 54: 501, 1974.PubMedCrossRefGoogle Scholar
  34. 34.
    Mehmel, H. C., Duvelleroy, M. A., and Laver, M. B.: Responses of coronary blood flow to pH-induced changes in hemoglobin- O2 affinity. J. Appl. Physiol. 35: 485, 1973.PubMedGoogle Scholar
  35. 35.
    Mondzelewski, J. P., Guy, J. T., Bromberg, P. A., Metz, E. N., and Balcerzak, S. P.: Oxygen delivery following transfusion of stored blood. II. Acidotic rats. J. Appl. Physiol. 37: 64, 1974.PubMedGoogle Scholar
  36. 36.
    Neville, J. R.: Theoretical analysis of altitude tolerance and hemoglobin function. Aviat. Space Environ. Med. 48: 409, 1977.PubMedGoogle Scholar
  37. 37.
    Neville, J. R.: Altered haem-haem interaction and tissue-oxygen supply: a theoretical study. Br. J. Haematol. 35: 387, 1977.PubMedCrossRefGoogle Scholar
  38. 38.
    Oski, F. A. and Delivoria-Papadopoulos, M.: The red cell, 2,3-diphosphoglycerate, and tissue oxygen release. J. Pediatr. 77: 941, 1970.PubMedCrossRefGoogle Scholar
  39. 39.
    Oski, F. A. and McMillan, J. A.: Clinical significance of 2,3-diphosphoglycerate in hematology. In Gordon, A. S., Silber, R., and LoBue, J. (eds.): The Year in Hematology, 1977. New York, Plenum Medical Books, 1977, pp. 104–130.Google Scholar
  40. 40.
    Petschow, D., Wlirdinger, I., Baumann, R., Duhm, J., Braunitzer, G., and Bauer, C.: Causes of high blood O2 affinity of animals living at high altitude. J. Appl. Physiol. 42: 139, 1977.PubMedGoogle Scholar
  41. 41.
    Rand, P. W., Norton, J. M., Barker, N. D., Lovell, M. D., and Austin, W. H.: Responses to graded hypoxia at high and low 2,3-diphosphoglycerate concentrations. J. Appl. Physiol. 34: 827, 1973.PubMedGoogle Scholar
  42. 42.
    Riggs, T. A., Shafer, A. W., and Guenter, C. A.: Acute changes in oxyhemoglobin affinity. Effects on oxygen transport and utilization. J. Clin. Invest. 52: 2660, 1973.PubMedCrossRefGoogle Scholar
  43. 43.
    RØrth, M.: Hemoglobin interactions and red cell metabolism. Ser. Hematol. 5: 1, 1972.Google Scholar
  44. 44.
    Shappell, S. D. and Lenfant, C. J. M.: Adaptive, genetic, and iatrogenic alterations of the oxyhemoglobin-dissociation curve. Anesthesiology 37: 127, 1972.PubMedCrossRefGoogle Scholar
  45. 45.
    Shappell, S. D. and Lenfant, C.: Physiological role of the oxyhemoglobin dissociation curve. In Surgenor, D. MacN. (ed.): The Red Blood Cell. Vol. 2. New York, Academic Press, 1975, pp. 841–871.Google Scholar
  46. 46.
    Shappell, S. D., Murray, J. A., Bellingham, A. J., Woodson, R. D., Detter, J. C., and Lenfant, C.: Adaptation to exercise: role of hemoglobin affinity for oxygen and 2,3- diphosphoglycerate. J. Appl. Physiol. 30: 827, 1971.PubMedGoogle Scholar
  47. 47.
    Thomas, H. M., Lefrak, S. S., Irwin, R. S., Fritts, H. W., and Caldwell, P. R. B.: The oxyhemoglobin dissociation curve in health and disease. Am. J. Med. 57: 331, 1974.PubMedCrossRefGoogle Scholar
  48. 48.
    Torrance, J. D., Lenfant, C., Couz, J., and Marticorena, E.: Oxygen transport mechanisms in residents at high altitude. Respir. Physiol. 11: 1, 1971.CrossRefGoogle Scholar
  49. 49.
    Turek, Z. and Kreuzer, F.: Effect of a shift of the oxygen dissociation curve on myocardial oxygenation at hypoxia. In Grote, J., Reneau, D., and Thews, G. (eds.): Oxygen Transport to Tissue. II. Adv. Exp. Med. Biol. 75:657, 1976.Google Scholar
  50. 50.
    Turek, Z., Kreuzer, F., and Hoofd, L. J. C.: Advantage or disadvantage of a decrease of blood oxygen affinity for tissue oxygen supply at hypoxia. A theoretical study comparing man and rat. Pfliigers Arch. 342: 185, 1973.CrossRefGoogle Scholar
  51. 51.
    Turek, Z., Kreuzer, F., and Reginalda, B. E. M.: Blood gases at several levels of oxygenation in rats with a left-shifted oxygen dissociation curve. Pfliigers Arch. 376: 7, 1978.CrossRefGoogle Scholar
  52. 52.
    Turek, Z., Kreuzer, F., Turek-Maischeider, M., and Reginalda, B. E. M.: Blood O2 content, cardiac output, and flow to organs at several levels of oxygenation in rats with a left-shifted blood oxygen dissociation curve. Pfliigers Arch. 376: 201, 1978.CrossRefGoogle Scholar
  53. 53.
    Valeri, C. R.: Oxygen transport function of preserved red blood cells. In Valeri, C. R. (ed.): Blood Banking and the Use of Frozen Blood Products. Cleveland, CrC Press, 1976, pp. 141–174.Google Scholar
  54. 54.
    Woodson, R. D., Wranne, B., and Detter, J. C.: Effect of increased blood oxygen affinity on work performance of rats. J. Clin. Invest. 52: 2717, 1973.PubMedCrossRefGoogle Scholar
  55. 55.
    Wranne, B., Nordgren, L., and Woodson, R. D.: Increased blood oxygen affinity and physical work performance in man. Scand. J. Clin. Lab. Invest. 33: 337, 1974.CrossRefGoogle Scholar
  56. 56.
    Yhap, E. O., Wright, C. B., Popovic, N. A., and Alix, E. C.: Decreased oxygen uptake with stored blood in the isolated hindlimb. J. Appl. Physiol. 38: 882, 1975.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1982

Authors and Affiliations

  • Jochen Duhm

There are no affiliations available

Personalised recommendations