Skip to main content

Part of the book series: Progress in Physics ((PMP,volume 8))

  • 156 Accesses

Abstract

In the last few years lattice gauge theory has become the primary tool for the study of nonperturbative phenomena in gauge theories. The lattice serves as an ultraviolet cutoff, rendering the theory well defined and amenable to numerical and analytical work. Of course, as with any cutoff, at the end of a calculation one must consider the limit of vanishing lattice spacing in order to draw conclusions on the physical continuum limit theory. The lattice has the advantage over other regulators that it is not tied to the Feynman expansion. This opens the possibility of other approximation schemes than conventional perturbation theory. Thus Wilson used a high temperature expansion to demonstrate confinement in the strong coupling limit. Monte Carlo simulations have dominated the research in lattice gauge theory for the last four years, giving first principle calculations of nonperturbative parameters characterizing the continuum limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Coleman and E. Weinberg, Phys. Rev. D7 (1973) 1888.

    Google Scholar 

  2. D. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343; Phys. Rev. D8 (1973) 3633; W.E. Caswell, Phys. Rev. Lett. 33 (1974)244; D.R.T. Jones, Nucl. Phys. B75 (1974) 531.

    Article  Google Scholar 

  3. M. Creutz and K.J.M. Moriarty, Phys. Rev. D26 (1982) 2166.

    Google Scholar 

  4. A. Hasenfratz and P. Hasenfratz, Phys. Lett. 93B (1980) 165.

    Google Scholar 

  5. K. Wilson, Phys. Rev. D10 (1974) 2445.

    Google Scholar 

  6. R. Balian, J.M. Drouffe, C. Itzykson, Phys. Rev. D10 (1974) 3376; D11 (1975) 2098; D11 (1975) 2104.

    Google Scholar 

  7. L.P. Kadanoff, Rev. Mod. Phys. 49 (1977) 267.

    Article  Google Scholar 

  8. K.M. Bitar, S. Gottlieb, C. Zachos, Phys. Rev. D26 (1982) 2853.

    Article  Google Scholar 

  9. E. Tomboulis, Phys. Rev Lett. 50 (1983) 885.

    Article  Google Scholar 

  10. H. Creutz, L. Jacobs, C. Rebbi, Physics Reports (In press).

    Google Scholar 

  11. L. McClerran and B. Svetitsky, Phys. Lett. 98B (1981)195; J. J. Kuti, J. Polonyi, K. Szlachanyi, Phys. Lett. 98B (1981) 199; K. Kajantie, C. Montonen, E. Pietarinen, Zeit. Phys. C9 (1981) 253; J. Engels, F. Karsch, H. Satz, J. Montvay, Phys. Lett. 101B (1981) 89; Nucl. Phys. B205 (1982) 545.

    Google Scholar 

  12. K. Johnson, talk at this conference.

    Google Scholar 

  13. B. Berg and A. Billoire, Phys. Lett. 114B (1982)324; K. Ishlkava, C. Schlerholz, M. Teper, Phys. Lett. 110B (1982) 399.

    Google Scholar 

  14. D. Weingarten and D. Petcher, Phys. Lett. 99B (1981) 333.

    Google Scholar 

  15. F. Fucito, E. Marinari, G. Parisi, C. Rebbi, Nucl. Phys. B180 (1981) 369.

    Article  Google Scholar 

  16. H. Hamber, E. Marinari, C. Parisi, C. Rebbi, preprint (1983).

    Google Scholar 

  17. J. Kutl, Phys. Rev. Lett. 49 (1982) 183.

    Article  Google Scholar 

  18. W. Duffy, G. Guralnik, D. Weingarten, preprint (1983)

    Google Scholar 

  19. D. Welngarten, Phys. Lett. 109B (1982)57; H. Hamber and G. Parisi, Phys. Rev. Lett. 47 (1982) 1792; E. Marinari, G. Parisi, C. Rebbi, Phys. Rev. Lett. 47 (1981) 1798.

    Google Scholar 

  20. D. Callaway and A. Rahman, Phys. Rev. Lett. 49 (1982) 613.

    Article  Google Scholar 

  21. M. Creutz, preprint (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Birkhäuser Boston, Inc.

About this chapter

Cite this chapter

Creutz, M. (1983). Lattice Gauge Theories. In: Milton, K.A., Samuel, M.A. (eds) Workshop on Non-Perturbative Quantum Chromodynamics. Progress in Physics, vol 8. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-5619-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5619-9_14

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-3127-7

  • Online ISBN: 978-1-4612-5619-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics