Effective Quark Propagator and QQ̄ States in QCD

  • H. Munczek
  • A. M. Nemirovsky
Part of the Progress in Physics book series (PMP, volume 8)


He discuss in this contribution the role of the quark propagator in an approximation scheme [1] to calculate masses and wavefunctions of the states in quantum chromodynamics. The scheme is based on the Bethe-Salpeter equation for the QQ̄ amplitude solved together with the Schwinger-Dyson equation for the quark propagator.


Gluon Propagator Quark Propagator Fermion Propagator Bound State Equation Massive Vector Meson 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Munczek and A. M. Nemirovsky, University of Kansas preprint. To be published in Phys. Rev. D.Google Scholar
  2. [2]
    G. ’t Hooft, Nucl. Phys. B75, 461 (1974); C. Callan, N. Coote, and D. Gross, Phys. Rev. D13, 649 (1976).CrossRefGoogle Scholar
  3. [3]
    C. Alabiso and G. Schierholz, Nucl. Phys. B110, 81 (1976); B110 93 (1976).CrossRefGoogle Scholar
  4. [4]
    H. Pagels, Phys. Rev. D14. 2747 (1976); D15, 2991 (1977).Google Scholar
  5. [5]
    A. Swift and F. Roig, Phys. Rev. D18, 1306 (1978).CrossRefGoogle Scholar
  6. [6]
    S. Mandelstam, Phys. Rev. D20 3223 (1979).CrossRefGoogle Scholar
  7. [7]
    U. Bar-Gadda, Nucl. Phys. B163, 312 (1980).CrossRefGoogle Scholar
  8. [8]
    K. Lane, Phys. Rev D10 2605 (1974).Google Scholar
  9. [9]
    Quark propagators interpreted as indicating confinement have been discussed in Refs. 4–7 above, and also by J. K. Cornwall, Phys. Rev. D22, 1452 (1980); and by J. S. Ball and F. Zachariasen, Phys. Lett. 106B. 133 (1981).Google Scholar
  10. [10]
    C. H. Llewellyn Smith, Ann. Phys. (N.Y.) 53, 521 (1969).Google Scholar
  11. [11]
    M. Gell-Kann, R. J. Oakes and B. Renner, Phys. Rev. 175, 2195 (1968).CrossRefGoogle Scholar
  12. [12]
    A calculation using Eq. (5), but with V(q) = 0, shows that one can obtain solutions for the L = 1, scalar and axial vector states; A. N. Nemirovsky, University of Kansas preprint.Google Scholar

Copyright information

© Birkhäuser Boston, Inc. 1983

Authors and Affiliations

  • H. Munczek
    • 1
  • A. M. Nemirovsky
    • 1
  1. 1.Department of Physics and AstronomyThe University of KansasLawrenceUSA

Personalised recommendations