Photodynamic insecticides: A review of studies on photosensitizing dyes as insect control agents, their practical application, hazards, and residues

  • J. R. Robinson
Conference paper
Part of the Residue Reviews book series (RECT, volume 88)

Abstract

The study of chemical compounds which exhibit light-sensitizing insecticidal activity is a complex and rapidly expanding field. There is increasing evidence that light-initiated toxic mechanisms play an important role in evolutionary processes as well as in natural control of insect populations. Graham (1963) was early in calling attention to the possibility of using “photosensitizing agents” as insecticides and later (1972 a) he enlarged on this in a discussion of the entomological, ecological and evolutionary implications of “photodynamic action.” The latter is recognized today to be only one of the photochemical routes which are involved in biochemical and physiological damage caused by light; it is therefore necessary to limit the scope of this review.

Keywords

Iodine Fluores Malaria Chitin Toxicology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amagasa, J.: Dye binding and photodynamic action. Photochem. Photobiol. 33, 947 (1981).Google Scholar
  2. Anonymous: Diet-hyperactivity link remains unconfirmed. Chem. Eng. News 60 (4) 11 (1982).Google Scholar
  3. Au, W., and T. C. Hsu: Studies on the clastogenic effects of biologic stains and dyes. Environ. Mutagen. 1, 27 (1979).PubMedGoogle Scholar
  4. Barbieri, A.: Sensibilizadores fluorescentes como larvicidas. Acción fotodinámica de 1a luz. Riv. Malariol. 7, 456 (1928).Google Scholar
  5. Barbosa, P., and T. M. Peters: Retardation of growth-rate in Aedes aegypti (L.) larvae exposed to vital dyes. J. Med. Entomol. 7, 693 (1970).PubMedGoogle Scholar
  6. Barbosa, P., and T. M. Peters — The effects of vital dyes on living organisms with special reference to methylene blue and neutral red. Histochem. J. 3, 71 (1971).PubMedGoogle Scholar
  7. Barratt, M. D., J. C. Evans, C. A. Lewis, and C. C. Rowlands: Comparison of the photodynamic action of rose bengal and tetrachlorosalicylanilide on isolated porcine erythrocyte membranes. Chem. Biol. Interact. 38, 215 (1982).PubMedGoogle Scholar
  8. Bezman, S. A., P. A. Burtis, T. P. J. Izod, and M. A. Thayer: Photodynamic inactivation of E. coli by rose bengal immobilized on polystyrene beads. Photochem. Photobiol. 28, 325 (1978).PubMedGoogle Scholar
  9. Blum, H. F.: Photodynamie action and diseases caused by light. Amer. Chem. Soc. Monograph series No. 85. (a, p. 4; b, p. 83) New York: Reinhold (1941).Google Scholar
  10. Bridges, A. C, J. Cocke, J. K. Olson, and R. T. Mayer: Effects of a new fluorescent insect growth regulator on the larval instars of Aedes aegypti Mosq. News 37, 227 (1977).Google Scholar
  11. Broome, J. R., M. F. Callaham, L. A. Lewis, C. M. Ladner, and J. R. Heitz: The effects of rose bengal on the imported fire ant, Solenopsis richten (Forel). Comp. Biochem. Physiol. 51C, 117 (1975).Google Scholar
  12. —, W. E. Poe, and J. R. Heitz: Biochemical changes in the boll weevil induced by rose bengal in the absence of light. Chem. Biol. Interact. 14, 203 (1976).PubMedGoogle Scholar
  13. Butterworth, K. R., I. F. Gaunt, P. Grasso, and S. D. Gangolli: Acute and shortterm toxicity studies on erythrosine BS in rodents. Food Cosmet. Toxicol. 14, 525 (1976a).PubMedGoogle Scholar
  14. — Short-term toxicity of erythrosine BS in pigs. Food Cosmet. Toxicol. 14, 533 (1976 b).PubMedGoogle Scholar
  15. Callaham, M. F., L. A. Lewis, M. E. Holloman, J. R. Broome, and J. R. Heitz: Inhibition of the acetylcholinesterase from the imported fire ant, Solenopsis richten (Forel), by dye-sensitized photooxidation. Comp. Biochem. Physiol. 51C, 123 (1975a).Google Scholar
  16. —, J. R. Broome, O. H. Lindig, and J. R. Heitz: Dye-sensitized photooxidation reactions in the boll weevil, Anthonomous grandis. Environ. Entomol. 4, 837 (1975b).Google Scholar
  17. —, W. E. Poe, and J. R. Heitz: Time dependence of light-independent biochemical changes in the boll weevil, Anthonomous grandis, caused by dietary rose bengal. Environ. Entomol. 6, 669 (1977 a).Google Scholar
  18. —, C. O. Palmertree, J. R. Broome, and J. R. Heitz: Dye-sensitized photoinactivation of the lactic dehydrogenase and acetylcholinesterase from the boll weevil, Anthonomous grandis. Pestic. Biochem. Physiol. 7, 21 (1977 b).Google Scholar
  19. Carpenter, T. L., and J. R. Heitz: Light-dependent latent toxicity of rose bengal to Culex pipiens quinquefasciatus. Environ. Entomol. 9, 533 (1980).Google Scholar
  20. —, T. G. Mundie, J. H. Ross, and J. R. Heitz: Synergistic effect of fluorescein on rose bengal-induced, light-dependent toxicity. Environ. Entomol. 10, 953 (1981 a).Google Scholar
  21. —, and J. R. Heitz: Light-dependent and-independent toxicity of erythro-sin B to Culex pipiens quinquefasciatus Say. Environ. Entomol. 10, 972 (1981 b).Google Scholar
  22. Certified Color Industry Committee: Use of certified FD&C colors in food. Food Technol. 22(8), Table 3, p. 15 (1968).Google Scholar
  23. Chung, K-T., G. E. Fulk, and A. W. Andrews: Mutagenicity testing of some commonly used dyes. Applied Environ. Microbiol. 42, 641 (1981).Google Scholar
  24. Clement, S. L., R. S. Schmidt, G. Szatmari-Goodman, and E. Levine: Activity of xanthene dyes against black cutworm larvae. J. Econ. Entomol. 73, 390 (1980).Google Scholar
  25. Collins, T. F. X., and E. L. Long: Effects of chronic oral administration of erythrosine in the mongolian gerbil. Food Cosmet. Toxicol. 14, 233 (1976).PubMedGoogle Scholar
  26. Colour Index: Publ. by The Society of Dyers and Colourists, Bradford, England and The American Association of Textile Chemists and Colorists. 3rd Ed. Lowell, MA (1971).Google Scholar
  27. Conners, C. K.: Food additives and hyperactive children, p. 93. New York: Plenum Press (1980).Google Scholar
  28. Creighton, C. S., T. L. McFadden, and J. M. Schalk: Toxicity of dietary rose bengal to larvae of the cabbage looper, corn earworm and pickleworm. J. Georgia Entomol. Soc. 15, 66 (1980).Google Scholar
  29. Daniel, J. W.: The excretion and metabolism of edible food colors. Toxicol. Applied Pharmacol. 4, 572 (1962).Google Scholar
  30. Daum, R. J., R. T. Gast, and T. B. Davich: Marking adult boll weevils with dyes fed in a cottonseed oil bait. J. Econ. Entomol. 62, 943 (1969).Google Scholar
  31. Dickinson, D., and T. W. Raven: Stability of erythrosine in artificially coloured canned cherries. J. Sci. Food Agr. 13, 650 (1962).Google Scholar
  32. Fairbrother, T. E.: Effects of xanthene dyes on face fly larvae and effects of erythrosin B on ruminant digestion. Ph.D. Thesis. Mississippi State University (1978).Google Scholar
  33. —, H. W. Essig, R. L. Combs, and J. R. Heitz: Toxic effects of rose bengal and erythrosin B on three life stages of the face fly, Musca autumnalis. Environ. Entomol. 10, 506 (1981).Google Scholar
  34. Feingold, B. F.: Why your child is hyperactive. New York: Random House (1975).Google Scholar
  35. Fondren, J. E., B. R. Norment, and J. R. Heitz: Dye-sensitized photooxidation in the house fly, Musca domestica. Environ. Entomol. 7, 205 (1978a).Google Scholar
  36. J. R. Heitz: Xanthene dye induced toxicity in the adult face fly, “Musca autumnalis”. Environ. Entomol. 7, 843 (1978 b).Google Scholar
  37. — Light intensity as a critical parameter in the dye-sensitized photooxidation of the house fly, Musca domestica. Environ. Entomol. 7, 891 (1978 c).Google Scholar
  38. — Dye-sensitized house fly toxicity produced as a function of variable light sources. Environ. Entomol. 8, 432 (1979).Google Scholar
  39. Foote, C. S.: Photosensitized oxidation and singlet oxygen: Consequences in biological systems. In W. A. Pryor (ed.): Free radicals in biology. Vol. 2, p. 85. New York: Academic Press (1976).Google Scholar
  40. Goldberg, A. L., and R. J. Calvey: Automated high-performance liquid Chromatographie determination of intermediates and side reaction products in FD&C Red No. 3. J. Assoc. Official Anal. Chemists 65, 103 (1982).Google Scholar
  41. Goldenring, J. R., D. K. Batter, and B. A. Shaywitz: Effect of chronic erythrosin B administration on developing rats. Neurobehav. Toxicol. Teratol. 3, 57 (1981).Google Scholar
  42. Graham, K.: Concepts of forest entomology, p. 256. New York: Reinhold (1963).Google Scholar
  43. — Entomological, ecological and evolutionary implications of photody-amic action. Can. J. Zool. 50, 1631 (1972 a).Google Scholar
  44. — E. Wrangler, and L. H. Aasen: Susceptibility of the mealworm (Tenebrio molitor (L.)) to photodynamic injury by méthylène blue. Can. J. Zool. 50, 1625 (1972 b).Google Scholar
  45. Gurr, E.: Synthetic dyes in biology, medicine and chemistry. New York: Academic Press (1971).Google Scholar
  46. Gutter, B., W. T. Speck, and H. S. Rosenkranz: A study of the photoinduced mutagenicity of méthylène blue. Mutat. Res. 44, 177 (1977).PubMedGoogle Scholar
  47. Haveland-Smith, R. B., and R. D. Combes: Screening of food dyes for genotoxic activity. Food Cosmet. Toxicol. 18, 215 (1980).PubMedGoogle Scholar
  48. —, and B. A. Bridges: Studies on the genotoxicity of some fluorescein dyes. Mutat. Res. 88, 1 (1981).PubMedGoogle Scholar
  49. Hayes, D. K., and M. S. Schechter: Survival of codling moth larvae treated with methylene blue under short-and long-day photoperiods. J. Econ. Entomol. 63, 997 (1970).Google Scholar
  50. Heitz, J. R.: Erythrosin B kills flies in chicken manure. Interview; Chem. Eng. News 57(17), 21 (1979).Google Scholar
  51. —, and W. W. Wilson: Photodegradation of halogenated xanthene dyes. In M. V. Kennedy (ed.): Disposal and decontamination of pesticides, p. 35. Amer. Chem. Soc. Symposium series No. 73. Washington, D. C: American Chemical Society (1978).Google Scholar
  52. Hendricks, D. E.: Oil-soluble blue dye in larval diet marks adults, eggs and firststage F1 larvae of the pink bollworm. J. Econ. Entomol. 64, 1404 (1971).Google Scholar
  53. I ARC; International Agency for Research on Cancer: Monographs on the evaluation of the carcinogenic risk of chemicals to man. Vol. 16, pp. 221–233. Lyon: IARC-WHO (1978).Google Scholar
  54. Jodlbauer, A., and H. von Tappeiner: Ueber die Beteiligung des Sauerstoffes bei der photodynamischen Wirkung fluoreszierender Stoffe. Muench. Med. Wochenschr. 26, 1139 (1904).Google Scholar
  55. — Die Beteiligung des Sauerstoffes bei der Wirkung fluorescierender Stoffe. Dtsch. Arch. Klin. Med. 82, 520 (1905).Google Scholar
  56. Jones, R. L., E. A. Harrell, and J. W. Snow: Three dyes as markers for corn earworm moths. J. Econ. Entomol. 65, 123 (1972).Google Scholar
  57. Jordan, T. W., and J. N. Smith: Inhibition of house fly oxidative detoxication by phthaleins, fluoresceins and related compounds. Xenobiotica 11, 1 (1981).PubMedGoogle Scholar
  58. Kasha, M., and D. E. Brabham: Singlet oxygen electronic structure and photosensitization. Chapter 1 in Wasserman, H. H., and R. W. Murray (1979).Google Scholar
  59. Kepka, A. G., and L. I. Grossweiner: Photodynamic inactivation of lysozyme by eosin. Photochem. Photobiol. 18, 49 (1973).PubMedGoogle Scholar
  60. Kon-Heitz: Exchange of letters between Kon, S. H. and J. R. Heitz. Chem. Eng. News 57(27) 2; (31) 28; (45) 4 (1979).Google Scholar
  61. Lavialle, M., and B. Dumortier: Effet photodynamique du bleu de méthylène sur les larves de Pieris brassicae (L.). C. R. Hebd. Seances Acad. Sci., Ser. D. 287, 875 (1978).Google Scholar
  62. Levitan, H.: Food, drug and cosmetic dyes: Biological effects related to lipid solubility. Proc. Nat. Acad. Sci. U.S.A. 74, 2914 (1977).Google Scholar
  63. Lewis, I. L., R. M. Patterson, and H. C. McBay: The effects of rhodamine B on the chromosomes of Muntiacus muntjac. Mutat. Res. 88, 211 (1981).PubMedGoogle Scholar
  64. Lillie, R. D.: H. J. Conn’s Biological Stains. Baltimore: Williams & Wilkins (1969).Google Scholar
  65. Lochmann, E-R., and A. Micheler: Molecular and biochemical aspects of photodynamic action. Photochem. Photobiol. 29, 1199 (1979).Google Scholar
  66. Logani, M. K., W. A. Austin, B. Shah, and R. E. Davies: Photooxidation of 8-methoxypsoralen with singlet oxygen. Photochem. Photobiol. 35, 569 (1982).Google Scholar
  67. Lutty, G. A.: The acute intravenous toxicity of biological stains, dyes and other fluorescent substances. Toxicol. Applied Pharmacol. 44, 225 (1978).Google Scholar
  68. Marccaci, A.: Sur l’action des alcaloides dans le règne végétale et animal. Arch. Ital. Biol. 9, 2 (1888).Google Scholar
  69. Marmion, D. M.: Handbook of U.S. colorants for foods, drugs and cosmetics. New York: Wiley (1979).Google Scholar
  70. Matoltsy, G., and Fábián, Gy.: Measurement of the photodynamic effect of eancerogenic substances with biological indicators. Nature 158, 877 (1946).PubMedGoogle Scholar
  71. Maugh, T. H.: Exploring plant resistance to insects. Science 216, 722 (1982).PubMedGoogle Scholar
  72. Maus, K. L., E. R. Nestmann, and D. J. Kowbel: Absence of mutagenicity of phloxine and phloxine B in Escherichia coli and in Salmonella typhimurium. Mutat. Res. 91, 315 (1981).PubMedGoogle Scholar
  73. Merkel, P. B., and D. R. Kearns: Radiationless decay of singlet molecular oxygen in solution. J. Amer. Chem. Soc. 94, 7244 (1972).Google Scholar
  74. McCann, J., and B. N. Ames: Detection of carcinogens as mutagens in the Salmonella /microsome test: Assay of 300 chemicals: Discussion. Proc. Nat. Acad. Sci. U.S.A. 73, 950 (1976).Google Scholar
  75. Nilsson, R., P. B. Merkel, and D. R. Kearns: Unambiguous evidence for the participation of singlet oxygen (1△) in photodynamic oxidation of amino acids. Photochem. Photobiol. 16, 117 (1972).PubMedGoogle Scholar
  76. Noonan, J. E., and H. Meggos: Synthetic food colors. In T. E. Furia (ed.): Handbook of food additives. 2nd ed., vol. 2, p. 339, Table 1. Boca Raton, FL: CRC Press (1980).Google Scholar
  77. Peeples, W. A., and J. R. Heitz: The purification of xanthene dyes by reverse phase high performance liquid chromatography. J. Liq. Chromatog. 4, 51 (1981).Google Scholar
  78. Phillips, P. S., and C. A. Phillips: Photodynamic studies on acid ribonuclease from pea cotyledons. Experientia 37, 1270 (1981).Google Scholar
  79. Pimprikar, G. D., B. R. Norment, and J. R. Heitz: Toxicity of rose bengal to various instars of Culex pipiens quinquefasciatus and Aedes triseriatus. Environ. Entomol. 8, 856 (1979).Google Scholar
  80. —, J. E. Fondren, and J. R. Heitz: Small-and large-scale field tests of erythrosin B for house fly control in caged layer chicken houses. Envirøn. Entomol. 9, 53 (1980 a).Google Scholar
  81. —, B. L. Noe, B. R. Norment, and J. R. Heitz: Ovicidal, larvicidal and biotic effects of xanthene derivatives in the house fly, Musca domestica L. Environ. Entomol. 9, 785 (1980 b).Google Scholar
  82. Pooler, J. P., and D. P. Valenzeno: The role of singlet oxygen in photooxidation of excitable cell membranes. Photochem. Photobiol. 30, 581 (1979).PubMedGoogle Scholar
  83. Price, P. J., W. A. Suk, A. E. Freeman, W. T. Lane, R. L. Peters, M. L. Vernon, and R. J. Huebner: In vitro and in vivo indications of the carcinogenicity and toxicity of food dyes. Int. J. Cancer 21, 361 (1978).PubMedGoogle Scholar
  84. Raab, O.: Ueber die Wirkung fluorescirender Stoffe auf Infusorien. Z. für Biol. 39, 524 (1900).Google Scholar
  85. Respicio, N. C, and J. R. Heitz: Comparative toxicity of rhodamine B and rhodamine 6G to the house fly (Musca domestica L.). Bull. Environ. Contam. Toxicol. 27, 274 (1981).PubMedGoogle Scholar
  86. Rossi, E., A. van de Vorst, and G. Jori: Competition between singlet oxygen and electron transfer mechanisms in the porphyrin-sensitized photooxidation of L-tryptophan and tryptamine in aqueous cellular dispersions. Photochem. Photobiol. 34, 447 (1981).Google Scholar
  87. Sako, F., N. Kobayashi, H. Watabe, and N. Taniguchi: Cytotoxicity of food dyes on cultured fetal rat hepatocytes. Toxicol. Applied Pharmacol. 54, 285 (1980).Google Scholar
  88. Sakurai, H., and J. R. Heitz: Growth inhibition and photooxidative toxicity in the house fly, Musca domestica L., caused by xanthene dye in larval growth medium and after injection. Environ. Entomol. 11, 467 (1982).Google Scholar
  89. Schildmacher, H.: Über Photosensibilisierung von Stechmückenlarven durch fluoreszierende Farbstoffe. Biol. Zentralbl. 69, 468 (1950).Google Scholar
  90. Singh, A., and A. Petkau (eds.): Singlet oxygen and related species in chemistry and biology. Proc. Internat. Conf. on Singlet Oxygen, Pinawa, Manitoba, Canada, Aug. 1977. Photochem. Photobiol. 28, 429 (1978).Google Scholar
  91. Spikes, J. D.: Photodynamic action. In A. C. Giese (ed.): Photophysiology, vol. 3, p. 33. New York: Academic Press (1968).Google Scholar
  92. — Photosensitization. In K. C. Smith (ed.): The science of photobiology, p. 87. New York: Plenum Press (1977).Google Scholar
  93. —, and B. W. Glad: Photodynamic action. Photochem. Photobiol. 3, 471 (1964).Google Scholar
  94. —, and R. Livingstone: The molecular biology of photodynamic action: sensitized photooxidations in biological systems. In L. G. Augenstein, R. Mason, and M. Zelle (eds.): Advances in radiation biology, vol. 3, p. 29. New York: Academic Press (1969).Google Scholar
  95. Stern, A. M., V. D’aurora, and D. S. Sigman: Inhibition of Escherichia coli DNA polymerase I by rose bengal. Arch. Biochem. Biophys. 202, 525 (1980).PubMedGoogle Scholar
  96. Sugimura, T., S. Sato, M. Nagao, T. Yahagi, T. Matsushima, Y. Seino, M. Takeuchi, and T. Kawachi: Overlapping of carcinogens and mutagens. In P. N. Magee, S. Takayama, T. Sugimura and T. Matsushima (eds.): Fundamentals in cancer prevention, p. 191. Baltimore: Univ. Park Press (1976).Google Scholar
  97. Swanson, J. M., and M. Kinsbourne: Food dyes impair performance of hyperactive children on a laboratory learning test. Science 207, 1485 (1980 a).PubMedGoogle Scholar
  98. —, and W. J. Logan: Effects of food dyes on neurotransmitter accumulation in rat brain homogenate and on the behavior of hyperactive children. Effects of foods, drugs, dev. funct. nerv. syst., Methods Predict. Toxicity U.S. FDA., Publ. No. FDA-80-1076, p. 182 (1980 b).Google Scholar
  99. Tappeiner, H. von, and A. Jodlbauer: Über die Wirkung der photodynamischen (fluorescierenden) Stoffe auf Protozoen und Enzyme. Dtsch. Arch. Klin. Med. 80, 427 (1904).Google Scholar
  100. Tonogai, Y., M. Iwaida, M. Tati, Y. Ose, and T. Sato: Biochemical decomposition of coal-tar dyes. Acute toxicity of coal-tar dyes and their decomposed products. J. Toxicol. Sci. 3, 205 (1978).PubMedGoogle Scholar
  101. —, Y. Ito, M. Iwaida, M. Tati, Y. Ose, and T. Sato: Studies on the toxicity of coal-tar dyes I. Photodecomposed products of four xanthene dyes and their acute toxicity to fish. J. Toxicol. Sci. 4, 115 (1979 a).PubMedGoogle Scholar
  102. — Studies on the toxicity of coal-tar dyes II. Examination of the biological reaction of coal-tar dyes to vital body. J. Toxicol. Sci. 4, 211 (1979 b).PubMedGoogle Scholar
  103. U.S. National Institutes of Health: Defined diets and childhood hyperactivity. Consensus development conference summary, vol. 4, No. 3.Bethesda, MD: NIH (1982).Google Scholar
  104. Valenzeno, D. P., and J. P. Pooler: Phototoxicity: The neglected factor. J. Amer. Med. Assoc. 242, 453 (1979).Google Scholar
  105. — Cell membrane photomodification: Relative effectiveness of halogenated fluoresceins for photohemolysis. Photochem. Photobiol. 35, 343 (1982).PubMedGoogle Scholar
  106. Wade, M. J., and J. D. Spikes: The efficiency of halogenated fluoresceins as sensitizers for the photodynamic inactivation of trypsin. Photochem. Photobiol. 14, 221 (1971).Google Scholar
  107. Wasserman, H. H., and R. W. Murray (eds.): Singlet oxygen. New York: Academic Press (1979).Google Scholar
  108. Weaver, J. E., L. Butler, and T. P. Yoho: Photodynamic action in insects: Volumetric changes in the hemolymph and crop contents of dye-treated, lightexposed cockroaches. Environ. Entomol. 5, 840 (1976).Google Scholar
  109. —, and J. W. Amrine: Effects of erythrosin B on hemocytes of the American cockroach. Environ. Entomol. 11, 463 (1982).Google Scholar
  110. Wess, J. A., and D. L. Archer: Disparate in vivo and in vitro immunomodulatory activities of rhodamine B. Food Chem. Toxicol. 20, 9 (1982).PubMedGoogle Scholar
  111. Yoho, T. P., L. Butler, and J. E. Weaver: Photodynamic effect of light on dyefed house flies: Preliminary observations of mortality. J. Econ. Entomol. 64, 972 (1971).Google Scholar
  112. —, J. E. Weaver, and L. Butler: Photodynamic action in insects. 1. Levels of mortality in dye-fed light-exposed house flies. Environ. Entomol. 2, 1092 (1973).Google Scholar
  113. —, L. Butler, and J. E. Weaver: Photodynamic killing of house flies fed food, drug and cosmetic dye additives. Environ. Entomol. 5, 203 (1976).Google Scholar
  114. Ballard, J. B., A. D. Vance, and R. E. Gold: Light-dependent and-independent response of German cockroach male and brown-banded nymph populations to two photodynamic dyes. Environ. Entomol., in press (1983).Google Scholar
  115. Broome, J. R., M. F. Callaham, and J. R. Heitz: Xanthene dye-sensitized photooxidation in the black imported fire ant, Solenopsis richten. Environ. Entomol. 4, 883 (1975 b).Google Scholar
  116. David, R. M., and J. R. Heitz: Toxicity of an imported fire ant bait based on phloxin B (D&C Red 27). J. Agr. Food Chem. 26, 99 (1978).Google Scholar
  117. Levitan, H.: Current issues in neurotoxicity; Food colors. Effects of foods, drugs, dev. funct. nerv. syst., Methods Predict. Toxicity. U.S. FDA., Publ. No. FDA-80-1076, p. 185 (1980).Google Scholar
  118. Parkinson, T. M., and J. P. Brown: Metabolic fate of food colorants. Ann. Rev. Nut. 1, 175 (1981).Google Scholar
  119. Yoho, T. P.: The photo dynamic effect of light on dye-fed house flies, Musca domestica L. Ph.D. Thesis. Univ. W. VA (1972).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1983

Authors and Affiliations

  • J. R. Robinson
    • 1
  1. 1.Agriculture Canada, Research CentreUniversity Sub Post OfficeLondonCanada

Personalised recommendations