Some Non-commutative Methods in Algebraic Number Theory

  • Olga Taussky
Conference paper


Some time between the years 1930–32 I heard Emmy cry out: “ 1 – S = 2 if S = - 1.” What she meant was, of course, that the symbolic power 1 – S implies squaring if S is the automorphism given by the inverse. Many times I heard her say, in many contexts: “Das muss hyperkomplex bewiesen werden,” using the word hyperkomplex as an adverb. Both of these utterances were crucial for the work of Emmy that fits into the title of this article. Their implications illuminate a vast area of methods, formulations, new ideas.


Galois Group Ideal Class Quadratic Field Integral Matrix Class Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. E. Artin and J. Tate. Class Field Theory. Harvard Math. Dept., 1961Google Scholar
  2. E. A. Bender. Characteristic polynomials of symmetric matrices, II.Linear and Multilinear Alg., 2 (1974), 55–63.CrossRefMathSciNetGoogle Scholar
  3. S. Eilenberg and S. Maclane. Cohomology theory in abstract groups. Ann. Math., 48 (1947), 51–78MATHCrossRefMathSciNetGoogle Scholar
  4. S. Eilenberg and S. Maclane. Cohomology and Galois Theory, 1. Trans. Amer. Math. Soc., 64 (1948), 1–20MATHMathSciNetGoogle Scholar
  5. D. Estes. Determinants of Galois automorphisms of maximal commutative rings of 2 × 2 matrices. Linear Alg. and Appi. 27 (1979). 225–243MATHCrossRefMathSciNetGoogle Scholar
  6. D. Estes. Oral communication, 1982Google Scholar
  7. D. Estes and R. Guralnick. Representations under ring extensions: Latimer-MacDuffee and Taussky correspondences.Google Scholar
  8. D.K. Faddeev. On the representation of algebraic numbers by matrices. Zap. Nauk. Sem. Leningrad Old. Math. Inst., 46 (1974), 89–91MATHMathSciNetGoogle Scholar
  9. P. Flor. Über die Festlegung eines Galoispolynoms durch seine Wurzelpolynome. Monatsh. Math., 73 (1969), 397–311MATHCrossRefMathSciNetGoogle Scholar
  10. E. Formanek. Central polynomials for matrix rings. J. Algebra, 23 (1972), 129–132.MATHCrossRefMathSciNetGoogle Scholar
  11. A. Fröhlich. The genus field and genus group in finite number fields, I. Mathematika, 6 (1959), 40–46; II. ibid, 6 (1959), 142–146CrossRefMathSciNetGoogle Scholar
  12. Y. Furuta. The genus field and genus number in algebraic number fields. Nagoya Math. J., 29 (1967), 281–285MATHMathSciNetGoogle Scholar
  13. C. Gauss. Disquisitiones Arithmeticae Google Scholar
  14. K. Girstmair. On root polynomials of cyclic cubic equations.Arch. Math., 36 (1981a), 313–326.MATHCrossRefMathSciNetGoogle Scholar
  15. K. Girstmair. On relations between zeros of Galois polynomials. Monatsh. Math., 91 (1981b), 203–214.MATHCrossRefMathSciNetGoogle Scholar
  16. S. Gurak. On the Hasse norm principle. J. reine angew. Math., 299–300 (1978), 10–27.Google Scholar
  17. H. Hasse. Beweis eines Satzes und Widerlegung einer Vermutung über das allgemeine Normenrest— symbol. Werke, I. (1969), 155–160Google Scholar
  18. H. Hasse. A supplement to Leopoldt’s theory of genera in abelian number fields. J. Number Theory, 1 (1969), 4–7.MATHCrossRefMathSciNetGoogle Scholar
  19. F.P. Heider. Strahlknoten und Geschlechterkörper mod m. J. reine angew. Math., 320 (1980), 52–67Google Scholar
  20. G. Hochschild and T. Nakayama. Cohomology in class field theory. Ann. Math., 55 (1952), 348–366.Google Scholar
  21. M. Ishida. The Genus Fields of Algebraic Number Fields. Springer Lecture Notes in Math, 555. SpringerVerlag: New York, 1976.Google Scholar
  22. W. Jehne. Idealklassenfaktorensysteme und verallgemeinerte Theorie der verschränkten Produkte. Math. Sem. Hamb., 18 (1952), 70–98.MATHCrossRefMathSciNetGoogle Scholar
  23. W. Jehne. On knots in algebraic number theory. J. reine angew. Math., 311 (1979), 215–254 (with many references)CrossRefMathSciNetGoogle Scholar
  24. W. Jehne. Der Hassesche Normensatz und seine Entwicklung. Preprint.Google Scholar
  25. I. Kaplansky. Problems in the theory of rings. Amer. Math. Monthly, 77 (1970), 445–454.MATHCrossRefMathSciNetGoogle Scholar
  26. H. Kleiman. The determination of a Galois polynomial by its root polynomials.Amer. Math. Monthly, 74(1968), 55–56.Google Scholar
  27. H. Kleiman. Methods for uniquely determining Galois polynomials and related theorems. Monatsh. Math., 73 (1969), 63–68.MATHCrossRefMathSciNetGoogle Scholar
  28. H. Kuniyoshi and S. Takahashi. On the principal genus theorem. Tohoku Math. J., 5 (1953), 129–131.CrossRefMathSciNetGoogle Scholar
  29. C. G. Latimer and C. C. MacDuffee. A correspondence between classes of ideals and classes of matrices. Ann. Math., 34 (1933), 313–316.CrossRefMathSciNetGoogle Scholar
  30. H. W. Leopoldt. Zur Geschlechtertheorie in abelschen Zahlkörpern. Math. Nachr., 9 (1953), 351–362.MATHCrossRefMathSciNetGoogle Scholar
  31. F. Lorenz. Über eine Verallgemeinerung des Hasseschen Normensatzes. Math. Z., 173(1980), 203–210.MATHCrossRefMathSciNetGoogle Scholar
  32. H. Muthsam. Eine Bemerkung über die Wurzelpolynome Galoisscher Gleichungen. Monatsh. Math., 83 (1977), 155–157MATHCrossRefMathSciNetGoogle Scholar
  33. T. Nakayama. Über die Beziehungen zwischen den Faktorensystemen und der Normklassengruppe eines Galoisschen Erweiterungskörpers. Math. Ann., 112 (1936), 85–91.CrossRefMathSciNetGoogle Scholar
  34. T. Nakayama. A theorem on the norm group of a finite extension field. Jap. J. Math., 18 (1943), 877–885.MATHMathSciNetGoogle Scholar
  35. E. Noether. Der Hauptgeschlechtssatz für relative-Galoissche Zahlkörper. Math. Ann., 108 (1933), 411–419.CrossRefMathSciNetGoogle Scholar
  36. E. Noether. Hyperkomplexe Systeme in ihren Beziehungen zur kommutativen Algebra und Zahlentheorie.Verhandl. des Internationalen Kongr., Zurich 1932, Vol. 1, 189–194.Google Scholar
  37. Y. P. Razmyslov. On a problem of Kaplansky. Transl. Math. USSR Izv., 1 (1973), 479–496.CrossRefGoogle Scholar
  38. O. Schilling. Über gewisse Beziehungen zwischen der Arithmetik hyperkomplexer Zahlsysteme und algebraischer Zahlkörper. Math. Ann., 111 (1935), 372–398.CrossRefMathSciNetGoogle Scholar
  39. A. Scholz. Totale Normenreste, die keine Normen sind, als Erzeuger nicht abelscher Körpererweiterungen, I. J. reine angew. Math., 172 (1936), 100–107; II, ibid, 182 (1940), 217–234.MathSciNetGoogle Scholar
  40. I. Schur. Über Ringbereiche im Gebiete der ganzzahligen linearen Substitutionen. Ges. Abh., II, 359–382.Google Scholar
  41. I. R. Shafarevich. On Galois groups of p-adic fields. C. R. Dokl. Acad. Sei. URSS, 53 (1946), 15–16.MATHMathSciNetGoogle Scholar
  42. H. M. Stark. The genus theory of number fields. Comm. Pure Appl. Math., 29 (1976), 805–811.MATHCrossRefMathSciNetGoogle Scholar
  43. H. D. Steckel. Abelsche Erweiterungen mit vorgegebenem Zahlknoten. Preprint.Google Scholar
  44. J. Tate. Global class field theory. In Cassels-Fröhlich (Eds.), Algebraic Number Theory, Academic Press: London, 1967.Google Scholar
  45. O. Taussky. On a theorem of Latimer and MacDuffee. Can. J. Math., 1 (1949), 300–302.MATHCrossRefMathSciNetGoogle Scholar
  46. O. Taussky. On matrix classes corresponding to an ideal and its inverse. III. J. Math., 1 (1957), 108–113.MATHMathSciNetGoogle Scholar
  47. O. Taussky. Ideal matrices, I. Archiv Math., I (1962), 275–282.CrossRefMathSciNetGoogle Scholar
  48. O. Taussky. On the similarity transformation between an integral matrix with irreducible characteristicpolynomial and its transpose.Math. Ann., 166 (1966), 60–63.MATHCrossRefMathSciNetGoogle Scholar
  49. O. Taussky. Norms from quadratic fields and their relations to non-commuting 2 × 2 matrices. Monatsh. Math., 82 (1972), 253–255.CrossRefMathSciNetGoogle Scholar
  50. O. Taussky. Additive commutators of rational 2x2 matrices.Linear Alg. and Appl., 12 (1975), 1–6.MATHCrossRefMathSciNetGoogle Scholar
  51. O. Taussky. From cyclic algebras of quadratic fields to central polynomials. J. Austral. Math. Soc., 25 (1978),503–506.MATHCrossRefMathSciNetGoogle Scholar
  52. O. Taussky. Composition of binary integral quadratic forms via integral 2x2 matrices and compositionof matrix classes. Linear and Multilinear Alg., 10 (1981), 309–318.MATHCrossRefMathSciNetGoogle Scholar
  53. O. Taussky. Two facts concerning rational 2x2 matrices leading to integral ternary forms representingzero. In Ternary Quadratic Forms and Norms. Marcel Dekker: New York, 1982, pp. 39–48. Google Scholar
  54. F. Terada. On the principal genus theorem concerning the abelian extensions. Tohoku Math. J., 4 (1952), 141–152.CrossRefMathSciNetGoogle Scholar
  55. A. Weil. Sur la théorie du corps de classes. J. Math. Soc. Japan, 3 (1951), 1–35.MATHCrossRefMathSciNetGoogle Scholar
  56. A. Weiss. Characteristic polynomials of symmetric matrices. InTernary Quadratic Forms and Norms. O. Taussky (Ed.). Marcel Dekker: New York, 1982, pp. 59–74.Google Scholar
  57. H. Zassenhaus. Neuer Beweis der Endlichkeit der Klassenzahl bei unimodularer Äquivalenz endlicher ganzzahliger Substitutionsgruppen. Abh. Math. Sem. Univ. Hamburg, 12 (1938), 276–288.CrossRefGoogle Scholar
  58. H. Zassenhaus. A theorem on cyclic algebras. In Number Theory and Algebra. Academic Press: New York, 1977, pp. 363–393.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1983

Authors and Affiliations

  • Olga Taussky

There are no affiliations available

Personalised recommendations