Skip to main content

Genetic Approaches to the Study of Protease Function and Proteolysis in Saccharomyces cerevisiae

  • Chapter

Part of the book series: Springer Series in Molecular Biology ((SSMOL))

Abstract

In the yeast Saccharomyces cerevisiae, proteases have been implicated in septum formation (Ulane and Cabib 1976), sporulation (Chen and Miller 1968; Hopper et al. 1974; Klar and Halvorson 1975; Betz and Weiser 1976; Zubenko and Jones 1981), protein turnover (Lopez and Gancedo 1979; Hansen et al. 1977), catabolite inactivation (Hägele et al. 1978; Neeff et al. 1978; Funayama et al. 1980; Holzer 1976; Jušik et al. 1976; Molano and Gancedo 1974; Magni et al. 1977; Magni et al. 1978), carbon starvation-induced degradation of NADP-dependent glutamate dehydrogenase (Hemmings and Mazon 1979; Mazon and Hemmings 1979), nitrogen starvation-induced degradation of NAD-dependent glutamate dehydrogenase (Hemmings 1980), enzyme secretion (Perlman and Halvorson 1981), localization of mitochondrial enzymes (Neupert and Schatz 1981), processing of enzyme precursors (Hemmings et al. 1981; Hasilik and Tanner 1978a, Jones et al. 1981; Zubenko et al. 1981), production of the pheromone α factor (J. Kurjan and I. Herskowitz 1982; D. Julius, A. Brake, L. Blair, and J. Thorner, personal communication), destruction of α factor (Maness and Edelman 1978; Ciejek and Thorner 1979; Ciejek 1980) and degradation of missense proteins (Donahue and Henry 1981) and nonsense fragments (Bigelis and Burridge 1978; Bigelis and Fink 1981).

Work in the author’s laboratory is supported by grants from the National Institutes of Health of the U.S. Public Health Service.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achstetter, T., Ehmann, C., Wolf, D. (1981). New proteolytic enzymes in yeast. Arch. Biochem. Biophys. 207:445–454.

    Article  PubMed  CAS  Google Scholar 

  • Aibara, S., Hayashi, R., Hata, T. (1971). Physical and chemical properties of yeast proteinase C. Agric. Biol. Chem. 35:658–666.

    Article  Google Scholar 

  • Bacon, J., Davidson, E., Jones, D., Taylor, I. (1966). The location of chitin in the yeast cell wall. Biochem. J. 101:36C–38C.

    PubMed  CAS  Google Scholar 

  • Bacon, J., Farmer, V., Jones, D., Taylor, I. (1969). The glucan components of the cell wall of bakers yeast (Saccharomyces cerevisiae) considered in relation to its ultrastructure. Biochem. J. 114:557–565.

    PubMed  CAS  Google Scholar 

  • Bakalkin, G., Kalnov, S., Zubatov, A., Luzikov, V. (1976). Degradation of total cell protein at different stages of Saccharomyces cerevisiae yeast growth. FEBS Lett. 63:218–221.

    Article  PubMed  CAS  Google Scholar 

  • Barth, R., Wolf, D., Holzer, H. (1978). Studies on the carboxypeptidase Y-inhibitor complex of yeast. Biochim. Biophys. Acta 527:63–69.

    PubMed  CAS  Google Scholar 

  • Bauer, H., Sigarlakie, E. (1975). Localization of alkaline phosphatase in Saccharomyces cerevisiae by means of ultrathin frozen sections. J. Ultrasr. Res. 50:208–215.

    Article  CAS  Google Scholar 

  • Beck, I., Fink, G. Wolf, D. (1980). The intracellular proteinases and their inhibitors in yeast. A mutant with altered regulation of proteinase A inhibitor activity. J. Biol. Chem. 255: 4821–4828.

    PubMed  CAS  Google Scholar 

  • Becker, J., Naider, F. (1980). Transport and utilization of peptides in yeast. In: Microorganisms and Nitrogen Sources, edited by J. Payne. New York: Wiley, pp. 257–275.

    Google Scholar 

  • Betz, H. (1975). Levels and turnover of the proteinase B inhibitors in yeast. Biochim. Biophys. Acta 404:142–151.

    PubMed  CAS  Google Scholar 

  • Betz, H. (1976). Inhibition of protein synthesis stimulates intracellular protein degradation in growing yeast cells. Biochem. Biophys. Res. Commun. 72:121–130.

    Article  PubMed  CAS  Google Scholar 

  • Betz, H. (1979). Loss of sporulation ability in a yeast mutant with low proteinase A levels. FEBS Lett. 100:171–174.

    Article  PubMed  CAS  Google Scholar 

  • Betz, H., Weiser, U. (1976). Protein degradation and proteinases during yeast sporulation. Eur. J. Biochem. 62:65–76.

    CAS  Google Scholar 

  • Betz, H., Hinze, H., Holzer, H. (1974). Isolation and properties of two inhibitors of proteinase B from yeast. J. Biol. Chem. 249:4515–4521.

    PubMed  CAS  Google Scholar 

  • Bigelis, R., Burridge, K. (1978). The immunological detection of yeast nonsense termination fragments on sodium dodecylsulfate—Polyacrylamide gels. Biochem. Biophys. Res. Commun. 82:322–327.

    Article  CAS  Google Scholar 

  • Bigelis, R., Fink, G. (1981). The HIS4 multifunctional protein: Immunochemistry of the wild type protein and altered forms. J. Biol. Chem. 256:5144–5152.

    PubMed  CAS  Google Scholar 

  • Böhni, P., Gasser, S., Leaver, C., Schatz, G. (1980). In: Structure and Expression of the Mitochondrial Genome, edited by A. M. Kroon and C. Sacconi. Amsterdam: North-Holland, pp. 423–433.

    Google Scholar 

  • Bucking-Throm, E., Düntze, W., Hartwell, L., and Manney, T. (1973). Reversible arrest of haploid yeast cells at the initiation of DNA synthesis by a diffusible sex factor. Exp. Cell Res. 76:99–110.

    Article  PubMed  CAS  Google Scholar 

  • Bünning, P., Holzer, H. (1977). Natural occurrence and chemical modification of proteinase B inhibitors from yeast. J. Biol. Chem. 252:5316–5323.

    PubMed  Google Scholar 

  • Cabib, E., Bowers, B. (1971). Chitin and yeast budding. Localization of chitin in yeast bud scars. J. Biol. Chem. 246:152–159.

    PubMed  CAS  Google Scholar 

  • Chan, R., Otte, C. (1982a). Isolation and genetic analysis of Saccharomyces cerevisiae mutants supersensitive to G1 arrest by a-factor and α-factor pheromone. Mol. Cell. Biol. 2:11–20.

    PubMed  CAS  Google Scholar 

  • Chan, R., Otte, C. (1982b). Physiological characterization of Saccharomyces cerevisiae mutants supersensitive to G1 arrest by a-factor and α-factor pheromone. Mol. Cell. Biol. 2:21–29.

    PubMed  CAS  Google Scholar 

  • Chen, A., Miller, J. (1968). Proteolytic activity of intact yeast cells during sporulation. Can. J. Microbiol. 14:957–963.

    Article  PubMed  CAS  Google Scholar 

  • Ciejek, E. (1980). Alpha-factor, an oligopeptide pheromone from Saccharomyces cerevisiae: Purification, chemical synthesis and cell-mediated proteolysis. Ph.D. Thesis, University of California, Berkeley.

    Google Scholar 

  • Ciejek, E., Thorner, J. (1979). Recovery of S. cerevisiae a cells from G1 arrest by α-factor pheromone requires endopeptidase action. Cell 18:623–635.

    Article  PubMed  CAS  Google Scholar 

  • Dietlein, G., Schweizer, E. (1975). Control of fatty acid biosynthesis in Saccharomyces cerevisiae. Eur. J. Biochem. 58:177–184.

    Article  PubMed  CAS  Google Scholar 

  • Doi, E., Hayashi, R., Hata, T. (1967). Purification of yeast proteinases II. Purification and some properties of yeast proteinase C. Agric. Biol. Chem. 31:160–169.

    Article  CAS  Google Scholar 

  • Donahue, T., Henry, S. (1981). Myoinositol-1-phosphate synthase: characteristics of the enzyme and identification of its structural gene in yeast. J. Biol. Chem. 256:7077–7085.

    PubMed  CAS  Google Scholar 

  • Diintze, W., MacKay, V., Manney, T. (1970). Saccharomyces cerevisiae: A diffusible sex factor. Science 168:1472–1473.

    Article  Google Scholar 

  • Diintze, W., Stötzler, D., Bucking-Throm, E., Kalbitzer, S. (1973). Purification and partial characterization of α-factor, a mating-type specific inhibitor of cell reproduction from S. cerevisiae. Eur. J. Biochem. 35:357–365.

    Article  Google Scholar 

  • Duran, A., Bowers, B., Cabib, E. (1975). Chitin synthetase zymogen is attached to the yeast plasma membrane. Proc. Natl. Acad. Sci. USA 72:3952–3955.

    Article  PubMed  CAS  Google Scholar 

  • Esmon, B., Novick, P., Schekman, R. (1981). Compartmentalized assembly of oligosaccharides on exported glycoproteins in yeast. Cell 25:451–460.

    Article  PubMed  CAS  Google Scholar 

  • Félix, F., Brouillet, N. (1966). Purification and propriétés de deux peptidases de levure de brasserie. Biochim. Biophys. Acta 122:127–144.

    PubMed  Google Scholar 

  • Ferguson, Jr., J., Boll, M., Holzer, H. (1967). Yeast malate dehydrogenase: enzyme inactivation in catabolite repression. Eur. J. Biochem 1:21–25.

    Article  PubMed  CAS  Google Scholar 

  • Fink, G., Styles, C. (1974). Gene conversion of deletions in the HIS4 region of yeast. Genetics 77:231–244.

    PubMed  CAS  Google Scholar 

  • Finkelstein, D., Strausberg, S. (1979). Metabolism of α-factor by a mating type cells of Saccharomyces cerevisiae. J. Biol. Chem. 254:796–803.

    PubMed  CAS  Google Scholar 

  • Fischer, E., Holzer, H. (1980). Interaction of proteinases and their inhibitors from yeast. Biochim. Biophys. Acta 615:187–198.

    PubMed  CAS  Google Scholar 

  • Frey, J., Röhm, K. -H. (1978). Subcellular localization and levels of aminopeptidases and dipeptidase in Saccharomyces cerevisiae. Biochim. Biophys. Acta 527:31–41.

    PubMed  CAS  Google Scholar 

  • Frey, J., Röhm, K. -H. (1979a). External and internal forms of yeast aminopeptidase II. Eur. J. Biochem. 97:169–173.

    Article  PubMed  CAS  Google Scholar 

  • Frey, J., Röhm, K. -H. (1979b). The glucose-induced inactivation of aminopeptidase I in Saccharomyces cerevisiae. FEBS Lett. 100:261–264.

    Article  PubMed  CAS  Google Scholar 

  • Fujishiro, K., Sanada, Y., Tanaka, H., Katunuma, N. (1980). Purification and characterization of yeast proteinase B. J. Biochem. 87:1321–1326.

    PubMed  CAS  Google Scholar 

  • Funayama, S., Gancedo, J., Gancedo, C. (1980). Turnover of yeast fructosebisphos-phatase in different metabolic condition. Eur. J. Biochem. 109:61–66.

    Article  PubMed  CAS  Google Scholar 

  • Gancedo, C. (1971). Inactivation of fructose 1,6-diphosphatase by glucose in yeast. J. Bacteriol. 107:401–405.

    PubMed  CAS  Google Scholar 

  • Gancedo, C., Schwerzmann, J. (1976). Inactivation by glucose of phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae. Arch. Microbiol. 109:221–225.

    CAS  Google Scholar 

  • Gorts, C. (1969). Effect of glucose on the activity and the kinetics of the maltose uptake system and of α-glucosidase in Saccharomyces cerevisiae. Biochim. Biophys. Acta 184:299–305.

    PubMed  CAS  Google Scholar 

  • Hägele, E., Neeff, J. Mecke, D. (1978). The malate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Eur. J. Biochem. 83:67–76.

    Article  PubMed  Google Scholar 

  • Halvorson, H. (1958a). Intracellular protein and nucleic acid turnover in resting yeast cells. Biochim. Biophys. Acta 27:255–266.

    Article  PubMed  CAS  Google Scholar 

  • Halvorson, H. (1958b). Studies on protein and nucleic acid turnover in growing cultures of yeast. Biochim. Biophys. Acta 27:267–276.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, R., Switzer, R., Hinze, H., Holzer, H. (1977). Effects of glucose and nitrogen source on the levels of proteinases, peptidases, and proteinase inhibitors in yeast. Biochim. Biophys. Acta 196:103–114.

    Google Scholar 

  • Hartwell, L., Culotti, J., Reid, B. (1970). Genetic control of the cell-division cycle in yeast. I. Detection of mutants. Proc. Natl. Acad. Sci. USA 66:352–359.

    Article  CAS  Google Scholar 

  • Hashimoto, C., Cohen, R., Zhang, W. -J. Ballou, C. (1981). Carbohydrate chains on yeast carboxypeptidase Y are phosphorylated. Proc. Natl. Acad. Sci. USA 78:2244–2248.

    Article  PubMed  CAS  Google Scholar 

  • Hasilik, A. (1974). Inactivation of chitin synthase in Saccharomyces cerevisiae. Arch. Microbiol. 101:295–301.

    Article  PubMed  CAS  Google Scholar 

  • Hasilik, A. (1980): Biosynthesis of lysosomal enzymes. Trends Biochem. Sci. 4:237–240.

    Article  Google Scholar 

  • Hasilik, A., Neufeld, E. (1980). Biosynthesis of lysosomal enzymes in fibroblasts. J. Biol. Chem. 255:4946–4950.

    PubMed  CAS  Google Scholar 

  • Hasilik, A., Tanner, W. (1976a). Biosynthesis of carboxypeptidase Y in yeast. Evidence for a precursor form of the glycoprotein. Biochem. Biophys. Res. Commun. 72:1430–1436.

    CAS  Google Scholar 

  • Hasilik, A., Tanner, W. (1978a). Biosynthesis of the vacuolar yeast glycoprotein carboxypeptidase Y. Conversion of precursor into enzyme. Eur. J. Biochem. 91:567–575.

    Article  PubMed  CAS  Google Scholar 

  • Hasilik, A., Tanner, W. (1978b). Carbohydrate moiety of carboxypeptidase Y and perturbation of its biosynthesis. Eur. J. Biochem. 91:567–575.

    Article  PubMed  CAS  Google Scholar 

  • Hasilik, A., Müller, H., Holzer, H. (1974). Compartmentation of the tryptophan-synthetase proteolyzing system in Saccharomyces cerevisiae. Eur. J. Biochem. 48:111–117.

    Article  CAS  Google Scholar 

  • Hayashi, R., Aibara, S., Hata, T. (1970). A unique carboxypeptidase activity of yeast proteinase C. Biochim. Biophys. Acta 212:359–361.

    PubMed  CAS  Google Scholar 

  • Hata, T., Hayashi, R., Doi, E. (1967a). Purification of yeast proteinases I. Fractionation and some properties of these proteinases. Agric. Biol. Chem. 31:150–159.

    Article  CAS  Google Scholar 

  • Hata, T., Hayashi, R., Doi, E. (1967b). Purification of yeast proteinases. III. Isolation and physicochemical properties of yeast proteinase A and C. Agric. Biol. Chem. 31:357–367.

    Article  CAS  Google Scholar 

  • Hayashi, R., Moore, S., and Stein, W. (1973). Carboxypeptidase from yeast. Large scale preparation and the application to COOH-terminal analysis of peptides and proteins. J. Biol. Chem. 248:2296–2302.

    PubMed  CAS  Google Scholar 

  • Hemmings, B. (1980). Phosphorylation and proteolysis regulate the NAD-dependent glutamate dehydrogenase from Saccharomyces cerevisiae. FEBS Lett. 122:297–302.

    Article  PubMed  CAS  Google Scholar 

  • Hemmings, B., Mazon, M. (1979). Proteolytic degradation of NADP-dependent glutamate dehydrogenase in yeast. In: Limited Proteolysis in Microorganisms, edited by H. Holzer and G. Cohen. DHEW Publ. No. 79–1591, pp. 69–75.

    Google Scholar 

  • Hemmings, G., Zubenko, G., Jones, E. (1980). Proteolytic inactivation of the NADP-dependent glutamate dehydrogenase in proteinase-deficient mutants of Saccharomyces cerevisiae. Arch. Biochem. Biophys. 202:657–660.

    Article  PubMed  CAS  Google Scholar 

  • Hemmings, B., Zubenko, G., Hasilik, A., Jones, E. (1981). Mutant defective in processing of an enzyme located in the lysosome-like vacuole of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 78:435–439.

    Article  PubMed  CAS  Google Scholar 

  • Hinze, H., Betz, H., Saheki, T., Holzer, H. (1975). Formation of a complex between yeast proteinases A and B. Hoppe-Seyler’s Z. Physiol. Chem. 356:1259–1264.

    CAS  Google Scholar 

  • Holzer, H. (1976). Catabolite inactivation in yeast. Trends Biochem. Sci. 1:178–181.

    CAS  Google Scholar 

  • Hopper, A., Magee, P., Welch, S., Friedman, M., Hall, B. (1974). Macromolecule synthesis and breakdown in relation to sporulation and meiosis in yeast. J. Bacteriol. 119:619–628.

    PubMed  CAS  Google Scholar 

  • Johnson, M. (1941). Isolation and properties of a pure yeast polypeptidase. J. Biol. Chem. 137:575–586.

    CAS  Google Scholar 

  • Jones, E. (1977). Proteinase mutants of Saccharomyces cerevisiae. Genetics 85:23–33.

    PubMed  CAS  Google Scholar 

  • Jones, E., Zubenko, G., Parker, R., Hemmings, B., Hasilik, A. (1981). Pleiotropic mutations of S. cerevisiae which cause deficiency for proteinases and other vacuole enzymes. Alfred Benzon Symposium 16:182–198, edited by D. von Wettstein, J. Friis, M. Kielland-Brandt, A. Stenderup. Copenhagen: Munksgaard.

    Google Scholar 

  • Jones, E., Zubenko, G., Parker, R. (1982). PEP4 gene function is required for expression of several vacuolar hydrolases in Saccharomyces cerevisiae. Genetics 102:665–677.

    PubMed  CAS  Google Scholar 

  • Jušik, M., Hinze, H., Holzer, H. (1976). Inactivation of yeast enzymes by proteinase A and B and carboxypeptidase Y from yeast. Hoppe-Seyler’s Z. Physiol. Chem. 357:735–740.

    Article  Google Scholar 

  • Kaneko, Y., Toh-e, A., Oshima, Y. (1982). Identification of the structural gene and a new regulatory gene for the synthesis of repressible alkaline phosphatase in Saccharomyces cerevisiae. Mol. Cell. Biol. 2:127–137.

    PubMed  CAS  Google Scholar 

  • Keesey, Jr., J., Bigelis, R., Fink, G. (1979). The product of the HIS4 gene cluster in Saccharomyces cerevisiae: a trifunctional polypeptide. J. Biol. Chem. 254:7427–7433.

    PubMed  CAS  Google Scholar 

  • Kenny, A., Booth, A., George, S., Ingram, J., Kershaw, D., Wood, E., and Young, A. (1976). Dipeptidyl peptidase IV, a kidney brush-border serine peptidase. Biochem. J. 157:169–182.

    PubMed  CAS  Google Scholar 

  • Klar, A., Halvorson, H. (1975). Proteinase activities of Saccharomyces cerevisiae. J. Bacteriol. 124:863–869.

    PubMed  CAS  Google Scholar 

  • Kominami, E., Hoffschulte, H., Holzer, H. (1981a). Purification and properties of proteinase B from yeast. Biochim. Biophys. Acta 661:124–135.

    CAS  Google Scholar 

  • Kominami, E., Hoffschulte, H. Leuschel, L., Maier, K., Holzer, H. (1981b). The substrate specificity of proteinase B from baker’s yeast. Biochim. Biophys. Acta 661:136–141.

    PubMed  CAS  Google Scholar 

  • Kreil, G., Mollay, C., Kaschnitz, R., Haiml, L., Vilas, U. (1980a). Prepromellitin: specific cleavage of the pre and the propeptide in vitro. Ann. N.Y. Acad. Sci. 343:338–346.

    Article  PubMed  CAS  Google Scholar 

  • Kreil, G., Haiml, L., Suchanek, G. (1980b). Stepwise cleavage of the pro part of promellitin by dipeptidylpeptidase IV. Eur. J. Biochem. 111:49–58.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn, R., Walsh, K., Neurath, H. (1974). Isolation and characterization of an acid carboxypeptidase from yeast. Biochemistry 13:3871–3877.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn, R., Walsh, K., Neurath, H. (1976). Reaction of yeast carboxypeptidase C with group specific reagents. Biochemistry 15:4881–4885.

    Article  PubMed  CAS  Google Scholar 

  • Kurjan, J., Herskowitz, I. (1982). Structure of a yeast pheromone gene (MFα): a putative α-factor precursor contains four tandem copies of mature α-factor. Cell 30:933–943.

    Article  PubMed  CAS  Google Scholar 

  • Lenney, J. (1975). Three yeast proteins that specifically inhibit yeast proteases A, B and C. J. Bacteriol. 122:1265–1273.

    PubMed  CAS  Google Scholar 

  • Lenney, J., Dalbec, J. (1967). Purification and properties of two proteinases from Saccharomyces cerevisiae. Arch. Biochem. Biophys. 120:42–48.

    Article  PubMed  CAS  Google Scholar 

  • Lenney, J., Matile, P., Wiemken, A., Schellenberg, M., Meyer, J. (1974). Activities and cellular localization of yeast proteinases and their inhibitors. Biochem. Biophys. Res. Commun. 60:1378–1383.

    Article  CAS  Google Scholar 

  • Lewin, A., Gregor, I., Mason, T., Nelson, N., Schatz, G. (1980). Cytoplasmically made subunits of yeast mitochondrial Fr ATPase and cytochrome c oxidase are synthesized as individual precursors, not as polyproteins. Proc. Natl. Acad. Sci. USA 77:3998–4002.

    Article  PubMed  CAS  Google Scholar 

  • Löffier, H. -G., Röhm, K. -H. (1979). Comparative studies on the dodecameric and hexameric forms of yeast aminopeptidase I. Z. Naturforsch 34c:381–386.

    Google Scholar 

  • Looze, Y., Gillet, L., Deconinck, M., Couteaux, B., Polastro, E., Leonis, J. (1979). Protease B from Saccharomyces cerevisiae. Int. J. Peptide Protein Res. 13:253–259.

    Article  CAS  Google Scholar 

  • Lopez, S., Gancedo, J. (1979). Effect of metabolic condition on protein turnover in yeast. Biochem. J. 178:769–776.

    PubMed  CAS  Google Scholar 

  • Maccechini, M. -L., Rudin, Y., Blobel, G., Schatz, G. (1979a). Import of proteins into mitochondria: precursor forms of the extramitochondrially made F1-ATPase subunits in yeast. Proc. Natl. Acad. Sci. USA 76:343–347.

    Article  Google Scholar 

  • Maccechini, M. -L., Rudin, Y., Schatz, G. (1979b). Transport of proteins across mitochondrial outer membrane. A precursor form of the cytoplasmically made intermembrane enzyme cytochrome c peroxidase. J. Biol. Chem. 254:7468–7471.

    Google Scholar 

  • Magni, G., Santarelli, I., Natalini, P., Ruggieri, S., Vita, A. (1977). Catabolite inactivation of bakers yeast uridine nucleosidase. Isolation and partial purification of a specific proteolytic inactivase. Eur. J. Biochem. 75:77–82.

    Article  PubMed  CAS  Google Scholar 

  • Magni, G., Pallotta, G., Natalini, P., Ruggieri, S., Santarelli, I., Vita, A. (1978). Inactivation of uridine nucleosidase in yeast. Purification and properties of an inactivating protein. J. Biol. Chem. 253:2501–2503.

    PubMed  CAS  Google Scholar 

  • Magni, G., Natalini, P., Santarelli, I., Ruggieri, S., Vita, A. (1979). Inactivation of bakers yeast uridine nucleosidase. In: Limited Proteolysis in Microorganisms, edited by H. Holzer, G. Cohen. DHEW Publ. No. 79–1591, pp. 87–96.

    Google Scholar 

  • Maier, K., Müller, H., Holzer, H. (1979a). Purification and molecular characterization of two inhibitors of yeast proteinase B. J. Biol. Chem. 254:8491–8497.

    PubMed  CAS  Google Scholar 

  • Maier, K., Müller, H., Tesch, R., Trolp, R., Witt, I., Holzer, H. (1979b). Primary structure of yeast proteinase B inhibitor 2. J. Biol. Chem. 254:12555–12561.

    PubMed  CAS  Google Scholar 

  • Maier, K., Müller, H., Tesch, R., Witt, I., Holzer, H. (1979c). Amino acid sequence of yeast proteinase B inhibitor 1 comparison with inhibitor 2. Biochem. Biophys. Res. Commun. 91:1390–1398.

    Article  PubMed  CAS  Google Scholar 

  • Maness, P., Edelman, G. (1978). Inactivation and chemical alteration of mating factor α by cells and spheroplasts of yeast. Proc. Natl. Acad. Sci. USA 75: 1304–1308.

    Article  PubMed  CAS  Google Scholar 

  • Marriott, M., Tanner, W. (1979). Localization of dolichyl phosphate- and pyrophos-phate-dependent glycosyl transfer reactions in Saccharomyces cerevisiae. J. Bacteriol. 139:565–572.

    CAS  Google Scholar 

  • Masuda, T., Hayashi, R., Hata, T. (1975). Aminopeptidases in the acidic fraction of the yeast autolysate. Agric. Biol. Chem. 39:499–505.

    Article  CAS  Google Scholar 

  • Matern, H., Holzer, H. (1977). Catabolite inactivation of the galactose uptake system in yeast. J. Biol. Chem. 252:6399–6402.

    PubMed  CAS  Google Scholar 

  • Matern, H., Betz, H., Holzer, H. (1974a). Compartmentation of inhibitors of proteinases A and B and carboxypeptidase Y in yeast. Biochem. Biophys. Res. Commun. 60:1051–1057.

    CAS  Google Scholar 

  • Matern, H., Hoffman, M., Holzer, H. (1974b). Isolation and characterization of the carboxypeptidase Y inhibitors from yeast. Proc. Natl. Acad. Sci. USA 71:4874–4878.

    Article  PubMed  CAS  Google Scholar 

  • Matern, H., Barth, R., Holzer, H. (1979). Chemical and physical properties of the carboxypeptidase Y inhibitor from bakers yeast. Biochim. Biophys. Acta 567:503–510.

    PubMed  CAS  Google Scholar 

  • Matile, P., Wiemken, A. (1967). The vacuole as the lysosome of the yeast cell. Arch. Mikrobiol. 56:148–155.

    Article  PubMed  CAS  Google Scholar 

  • Matile, P., Wiemken, A., Guyer, W. (1971). A lysosomal aminopeptidase isozyme in differentiating yeast cells and protoplasts. Planta 96:43–53.

    Article  CAS  Google Scholar 

  • Mazon, M. (1978). Effect of glucose starvation on the nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase of yeast. J. Bacteriol. 133:780–785.

    PubMed  CAS  Google Scholar 

  • Mazon, M., Hemmings, B. (1979). Regulation of Saccharomyces cerevisiae nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase by proteolysis during carbon starvation. J. Bacteriol. 139:686–689.

    PubMed  CAS  Google Scholar 

  • McLellan, Jr., W., Lampen, J. (1963). The acid phosphatase of yeast: localization and secretion by protoplasts. Biochim. Biophys. Acta 67:324–326.

    Article  PubMed  CAS  Google Scholar 

  • Mechler, B., Wolf, D. (1981). Analysis of proteinase A function in yeast. Eur. J. Biochem. 121:47–52.

    Article  PubMed  CAS  Google Scholar 

  • Mechler, B., Müller, M., Müller, H., Muessdoerffer, F., Wolf, D. (1982). In vivo biosynthesis of the vacuolar proteinases A and B in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 257:11203–11206.

    PubMed  CAS  Google Scholar 

  • Metz, G., Röhm, K. -H. (1978). Yeast aminopeptidase I. Chemical composition and catalytic properties. Biochim. Biophys. Acta 429:933–949.

    Google Scholar 

  • Metz, R., Marx, E., Röhm, K. -H. (1977). The quaternary structure of yeast aminopeptidase I. Z. Naturforsch. 32c:929–937.

    CAS  Google Scholar 

  • Mihara, K., Blobel, G. (1980). The four cytoplasmically made subunits of yeast mitochondrial cytochrome c oxidase are synthesized individually and not as a polyprotein. Proc. Natl. Acad. Sci. USA 77:4160–4164.

    Article  PubMed  CAS  Google Scholar 

  • Molano, J., Gancedo, C. (1974). Specific inactivation of fructose 1,6-bisphosphatase from Saccharomyces cerevisiae by a yeast protease. Eur. J. Biochem. 44:213–217.

    Article  PubMed  CAS  Google Scholar 

  • Mortimer, R., Schild, D. (1982). Genetic map of Saccharomyces cerevisiae. In: The Molecular Biology of the Yeast Saccharomyces. Metabolism and Gene Expression, edited by J. Strathern, E. Jones, J. Broach. Cold Spring Harbor, N. Y.: Cold Spring Harbor Laboratory, pp. 639–650.

    Google Scholar 

  • Muessdoerffer, F. (1980). Occurrence of proteinase A isoinhibitors in wild type yeast strains and commercial bakers yeast. Biochem. Biophys. Res. Commun. 97:423–429.

    Article  Google Scholar 

  • Muessdoerffer, F., Tortora, P., Holzer, H. (1980). Purification and properties of proteinase A from yeast. J. Biol. Chem. 255:12087–12093.

    Google Scholar 

  • Neeff, J., Hagele, E., Nauhaus, J., Heer, U., Mecke, D. (1978). Evidence for catabolite degradation in the glucose-dependent inactivation of yeast cytoplasmic malate dehydrogenase. Eur. J. Biochem. 87:489–495.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, N., Schatz, G. (1979). Energy-dependent processing of cytoplasmically made precursors to mitochondrial proteins: Proc. Natl. Acad. Sci. USA 76:4365–4369.

    Article  PubMed  CAS  Google Scholar 

  • Neupert, W., Schatz, G. (1981). How proteins are transported into mitochondria. Trends Biochem. Sci. 6:1–4.

    Article  CAS  Google Scholar 

  • Novick, P., Ferro, S., Schekman, R. (1981). Order of events in the yeast secretory pathway. Cell 25:461–469.

    Article  PubMed  CAS  Google Scholar 

  • Nunez de Castro, I., Holzer, H. (1976). Studies on the proteinase A inhibitor IA 3 from yeast. Hoppe-Seyler’s Z. Physiol. Chem. 357:727–734.

    Article  CAS  Google Scholar 

  • Perlman, D., Halvorson, H. (1981). Distinct repressible mRNAs for cytoplasmic and secreted yeast invertase are encoded by a single gene. Cell 25:525–536.

    Article  PubMed  CAS  Google Scholar 

  • Pilar-Fernandez, M., Correa, J., Cabib, E. (1982). Activation of chitin synthetase in permeabilized cells of a Saccharomyces cerevisiae mutant lacking proteinase B. J. Bacteriol. 152:1255–1264.

    Google Scholar 

  • Robertson, J., Halvorson, H. (1957). The components of maltozymase in yeast and their behavior during deadaptation. J. Bacteriol. 73:186–198.

    PubMed  CAS  Google Scholar 

  • Röhm, K. -H. (1974). Properties of a highly purified dipeptidase from brewers yeast. Hoppe-Seyler’s Z. Physiol. Chem. 355:675–686.

    Article  Google Scholar 

  • Rose, B., Becker, J. Naider, F. (1979). Peptidase activities in Saccharomyces cerevisiae. J. Bacteriol. 139:220–224.

    PubMed  CAS  Google Scholar 

  • Saheki, T., Matsuda, Y., Holzer, H. (1974). Purification and characterization of macromolecular inhibitors of proteinase A from yeast. Eur. J. Biochem. 47:325–332.

    Article  PubMed  CAS  Google Scholar 

  • Sanada, Y., Fujishiro, K., Tanaka, H., Katanuma, N. (1975). Isolation and characterization of yeast protease B. Biochem. Biophys. Res. Commun. 86:815–821.

    Article  Google Scholar 

  • Schweizer, E., Kuhn, L., Castorph, H. (1971). A new gene cluster in yeast: the fatty acid synthetase system. Hoppe-Seyler’s Z. Physiol. Chem. 352:3277–3284.

    Google Scholar 

  • Schweizer, E., Werkmeister, K., Jain, M. (1978). Fatty acid biosynthesis in yeast. Mol. Cell. Biochem. 21:95–106.

    CAS  Google Scholar 

  • Skudlarek, M., Swank, R. (1979). Biosynthesis of two lysosomal enzymes in macrophages. J. Biol. Chem. 254:9939–9942.

    PubMed  CAS  Google Scholar 

  • Sprague, Jr., G., Herskowitz, I. (1981). Control of yeast cell type by the mating type locus. I. Identification and control of expression of the a-specific gene, BARI. J. Mol. Biol. 153:305–321.

    Article  PubMed  CAS  Google Scholar 

  • Sprague, Jr., G., Rine, J., Herskowitz, I. (1981). Control of yeast cell type by the mating type locus. II. Genetic interactions between MATa and unlinked a-specific STE genes. J. Mol. Biol. 153:323–335.

    Article  PubMed  CAS  Google Scholar 

  • Steiner, D., Quinn, P., Chan, S., Marsh, J., Tager, H. (1980). Processing mechanisms in the biosynthesis of proteins. Ann. N.Y. Acad. Sci. 343:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Stern, A., Jones, B., Shively, J., Stein, S., Udenfriend, S. (1981). Two adrenal opiod polypeptides: proposed intermediates in the processing of proenkephalin. Proc. Natl. Acad. Sci. USA 78:1962–1966.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, T. Esmon, B., Schekman, R. (1982). Early stages in the yeast secretory path-way are required for transport of carboxypeptidase Y to the vacuole. Cell 30:439–448.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, J., Sherman, F., Shipman, N., Jackson, M. (1971). Identification and mutational relocation of the AUG codon initiating transcription of iso-1-cytochrome c in yeast. J. Biol. Chem. 246:7429–7445.

    PubMed  CAS  Google Scholar 

  • Stötzler, D., Düntze, W. (1976). Isolation and characterization of four related peptides exhibiting α-factor activity from Saccharomyces cerevisiae. Eur. J. Biochem. 65:257–262.

    Article  PubMed  Google Scholar 

  • Suarez-Rendueles, M., Schwencke, J., Garcia-Alvarez, N., Gascon, S. (1981). A new X-prolyl-dipeptidyl aminopeptidase from yeast associated with a particulate fraction. FEBS Lett. 131:296–300.

    Article  CAS  Google Scholar 

  • Sumrada, R., Cooper, T. (1978). Control of vacuole permeability and protein degradation by the cell cycle arrest signals in Saccharomyces cerevisiae. J. Bacteriol. 136:234–246.

    PubMed  CAS  Google Scholar 

  • Sutton, D., Lampen, J. (1962). Localization of sucrose and maltose fermenting systems in Saccharomyces cerevisiae. Biochim. Biophys. Acta 56:303–312.

    CAS  Google Scholar 

  • Trimble, R., Maley, F. (1977). The use of endo-β-N-acetylglucosaminidase H in characterizing the structure and function of glycoproteins. Biochem. Biophys. Res. Commun. 78:935–944.

    CAS  Google Scholar 

  • Trumbly, R. (1980). A genetic and biochemical study of the aminopeptidases of Saccharomyces cerevisiae. Ph.D. Thesis. University of California, Davis.

    Google Scholar 

  • Ulane, R., Cabib, E. (1974). The activating system of chitin synthetase from Saccharomyces cerevisiae. Purification and properties of an inhibitor of the activating factor. J. Biol. Chem. 249:3418–3422.

    PubMed  CAS  Google Scholar 

  • Ulane, R., Cabib, E. (1976). The activating system of chitin synthetase from Saccharomyces cerevisiae. J. Biol. Chem. 251:3367–3374.

    PubMed  CAS  Google Scholar 

  • Whitney, P., Cooper, T., Magasanik, B. (1973). The induction of urea carboxylase and allophanate hydrolase in Saccharomyces cerevisiae. J. Biol. Chem. 248:6203–6209.

    PubMed  CAS  Google Scholar 

  • Wiemken, A., Schellenberg, M., Urech, K. (1979). Vacuoles: the sole compartment of digestive enzymes in yeast (Saccharomyces cerevisiae)? Arch. Microbiol. 123:23–35.

    CAS  Google Scholar 

  • Witt, L, Kronau, R., Holzer, H. (1966). Isoenzyme der malat-dehydrogenase und ihre regulation in Saccharomyces cerevisiae. Biochim. Biophys. Acta 128:63–73.

    PubMed  CAS  Google Scholar 

  • Wolf, D., Ehmann, C. (1978a). Isolation of yeast mutants lacking proteinase B activity. FEBS Lett. 92:121–124.

    Article  CAS  Google Scholar 

  • Wolf, D., Ehmann, C. (1978b). Carboxypeptide S from yeast: regulation of its activity during vegetative growth and sporulation. FEBS Lett. 91:59–62.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, D., Ehmann, C. (1979). Studies on a proteinase B mutant of yeast. Eur. J. Biochem. 98:375–384.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, D., Ehmann, C. (1981). Carboxypeptidase S- and carboxypeptidase Y-deficient mutants of Saccharomyces cerevisiae. J. Bacteriol. 147:418–426.

    PubMed  CAS  Google Scholar 

  • Wolf, D., Fink, G. (1975). Proteinase C (carboxypeptidase Y) mutant of yeast. J. Bacteriol. 123:1150–1156.

    PubMed  CAS  Google Scholar 

  • Wolf, D., Weiser, U. (1977). Studies on a carboxypeptidase Y mutant of yeast and evidence for a second carboxyptidase activity. Eur. J. Biochem. 73:553–556.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, D., Ehmann, C., Beck, I. (1979). Genetic and biochemical analysis of intracellular proteolysis in yeast. In: Biological Functions of Proteinases, edited by H. Holzer and H. Tschesche. New York: Springer-Verlag, pp. 55–72.

    Google Scholar 

  • Zubenko, G. (1981). A genetic approach to the study of intracellular proteolysis in Saccharomyces cerevisiae. Ph.D. Thesis. Carnegie-Mellon University, Pittsburgh, Pennsylvania.

    Google Scholar 

  • Zubenko, G., Jones, E. (1979). Catabolite inactivation of gluconeogenic enzymes in mutants of yeast deficient in proteinase B. Proc. Natl. Acad. Sci. USA 76:4581–4585.

    Article  PubMed  CAS  Google Scholar 

  • Zubenko, G., Jones, E. (1981). Protein degradation, meiosis and sporulation in proteinase-deficient mutants of Saccharomyces cerevisiae. Genetics 97:45–64.

    PubMed  CAS  Google Scholar 

  • Zubenko, G., Mitchell, A., Jones, E. (1979). Septum formation, cell division and sporulation in mutants of yeast deficient in proteinase B. Proc. Natl. Acad. Sci. 76:2395–2399.

    Article  PubMed  CAS  Google Scholar 

  • Zubenko, G., Mitchell, A., Jones, E. (1980). Mapping of the proteinase B structural gene, PRB1, in Saccharomyces cerevisiae and identification of nonsense alleles within the locus. Genetics 96:137–146.

    PubMed  CAS  Google Scholar 

  • Zubenko, G., Park, F., Jones, E. (1981). PEP4 gene function is required for maturation of vacuolar hydrolases. In: Molecular Biology of Yeast. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory, p. 164.

    Google Scholar 

  • Zubenko, G., Park, F., Jones, E. (1982). Genetic properties of mutations at the PEP4 locus in Saccharomyces cerevisiae. Genetics 102:679–690.

    PubMed  CAS  Google Scholar 

  • Zubenko, G., Park, F., Jones, E. (1983). Mutations in the PEP4 locus of Saccharomyces cerevisiae block the final step in the maturation of two vacuolar hydrolases. Proc. Natl. Acad. Sci. USA 80:510–514.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Jones, E.W. (1983). Genetic Approaches to the Study of Protease Function and Proteolysis in Saccharomyces cerevisiae . In: Spencer, J.F.T., Spencer, D.M., Smith, A.R.W. (eds) Yeast Genetics. Springer Series in Molecular Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5491-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5491-1_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5493-5

  • Online ISBN: 978-1-4612-5491-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics