Skip to main content

Genetic Improvement of Wine Yeast

  • Chapter
Yeast Genetics

Part of the book series: Springer Series in Molecular Biology ((SSMOL))

Abstract

Until recently, most of the attention directed toward wine improvement has been concentrated upon improvement of grape varieties and their culture and on fermentation and wine-making practices. Relatively little has been paid to improvement of the other major organism involved in wine production, the wine yeast. This is now changing; papers reporting on genetic studies of wine yeasts are appearing with increasing frequency. For the wine maker it is extraordinarily fortunate that yeast has become one of the premier organisms for basic genetics research and is at the same time one of the leading industrial microorganisms. The wine maker can thus profit from both the impressive arsenal of genetic techniques and the extensive biochemical and molecular information on the yeast cell and also from decades of practical experience in handling it in large-scale industrial processes. A very comprehensive review of the genetics of all types of industrial yeasts has recently appeared (Johnston and Oberman 1979). Much of the information on brewing, baking, and dis-tilling yeasts is of direct interest to the wine yeast geneticist. The ability to utilize both conventional mutagenesis, hybridization, and selection programs in addition to the newly developed techniques of molecular cloning and protoplast fusion give yeast an advantage shared by few other organisms and should make possible the design of strains that a few years ago would have been impossible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama, H., Kumagai, C., Tanaka, Y., Ouchi, K. (1971). Studies on non-foaming yeast. VII. Selection of the practical non-foaming yeasts for sake brewing from various stock cultures. J. Soc. Brew. Japan 66:516–522.

    Google Scholar 

  • Alikhanyan, S. I., Nalbandyan, G. M. (1971). Selection of wine yeasts with the use of mutagens. I. Selection of Saccharomyces cerevisiae strains used in the production of natural strong table wines. Sov. Genet. 7:1200–1205.

    Google Scholar 

  • Alikhanyan, S. I., Nalbandyan, G. M., Avakyan, B. P. (1971a). Selection of wine yeasts using mutagens. II. Selection of highly active, alcohol resistant strains of Saccharomyces oviformis for the production of Kheres wines. Sov. Genet. 7:1287–1293.

    Google Scholar 

  • Alikhanyan, S. I., Nalbandyan, G. M., Avakyan, B. P. (1971b). Selection of wine yeasts using mutagens. III. Selection of new strains of Saccharomyces vini used in the production of champagne wines. Sov. Genet. 7:1452–1457.

    Google Scholar 

  • Anderson E., Martin, P. A. (1975). The sporulation and mating of brewing yeasts. J. Inst. Brew. 81:242–247.

    Google Scholar 

  • Azevedo, J. L., Tavares, F. C. A., Cruz, M. R. M. (1978). Genetic improvement of yeasts. In: Biochemistry and Genetics of Yeasts: Pure and Applied Aspects, edited by M. Bacila, B. L. Horecker, O. M. Andres. New York: Academic Press, pp. 563–575.

    Google Scholar 

  • Barney, M. C., Jansen, G. P., Helbert, J. R. (1980a). Use of spheroplast fusion and genetic transformation to introduce dextrin utilization into Saccharomyces uvarum. J. Amer. Soc. Brew. Chem. 38:1–5.

    CAS  Google Scholar 

  • Barney, M. C., Jansen, G. P., Helbert, J. R. (1980b). Use of genetic transformation for the introduction of flocculence into yeast. J. Amer. Soc. Brew. Chem. 38:71–74.

    CAS  Google Scholar 

  • Bevan, E. A., Makower, M. (1963). The physical basis of the killer character in yeast. Proc. Xlth Int. Cong. Genet. 1:202–203.

    Google Scholar 

  • Botstein, D., Falco, S. C., Stewart, S. E., Brennan, M., Scherer, S., Stinchcomb, D. T., Struhl, K., Davis, R. W. (1979). Sterile host yeasts (SHY): A eukaryotic system of biological containment for recombinant DNA experiments. Gene 8:17–24.

    PubMed  CAS  Google Scholar 

  • de van Broock, M. R., Sierra, M. F., de Figeuroa, L. I. (1980). Intergeneric fusion of yeast protoplasts. VI Int. Ferm. Symp./V Int. Symp. Yeasts, London (Canada).

    Google Scholar 

  • Brown, S. W., Oliver, S. G. (1980). Isolation of ethanol-tolerant mutants of yeast by continuous selection. Tenth Int. Conf. Yeast Genetics and Molecular Biology, Louvain-la-Neuve.

    Google Scholar 

  • Brown, S. W., Oliver, S. G., Harrison, D. E. F., Righelato, R. C. (1981). Ethanol inhibition of yeast growth and fermentation: differences in the magnitude and complexity of the effect. Eur. J. Appl. Microbiol. Biotechnol. 11:151–155.

    CAS  Google Scholar 

  • Conde, J., Fink, G. R. (1976). A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc. Natl. Acad. Sci. USA 73:3651–3655.

    PubMed  CAS  Google Scholar 

  • Cummings, J., Fogel, S. (1978). Genetic homology of wine yeasts with Saccharomyces cerevisiae. J. Inst. Brew. 84:267–270.

    CAS  Google Scholar 

  • Dott, W., Heinzel, M., Triiper, H. G. (1976). Sulfite formation by wine yeasts. I. Relationships between growth, fermentation, and sulfite formation. Arch. Microbiol. 107:289–292.

    CAS  Google Scholar 

  • Dott, W., Heinzel, M., Triiper, H. E. (1977). Sulfite formation by wine yeasts. IV. Active uptake of sulfate by “low” and “high” sulfite producing wine yeasts. Arch. Microbiol. 112:283–285.

    CAS  Google Scholar 

  • Dott, W., Trüper, H. G. (1976). Sulfite formation by wine yeasts. III. Properties of sulfite reductase. Arch. Microbiol. 108:99–104.

    CAS  Google Scholar 

  • Elender, R. P., Chang, L. T. (1979). Microbial culture selection. In: Microbial Technology, vol. II, edited by H. J. Peppier, D. Perlman. New York: Academic Press.

    Google Scholar 

  • Eschenbruch, R. (1974). Sulfite and sulfide formation during wine making—a review. Amer. J. Enol. Vitic. 25:157–161.

    CAS  Google Scholar 

  • Eschenbruch, R., Bonish, P. (1976a). The influence of pH on sulphite formation by yeasts. Arch. Microbiol. 107:229–231.

    CAS  Google Scholar 

  • Eschenbruch, R., Bonish, P. (1976b). Production of sulphite and sulphide by low- and high-sulphite forming wine yeasts. Arch. Microbiol. 107:299–302.

    CAS  Google Scholar 

  • Eschenbruch, R., Bonish, P., Fisher, B. M. (1978). The production of H2S by pure culture wine yeasts. Vitis 17:67–74.

    CAS  Google Scholar 

  • Eschenbruch, R., Rassell, J. M. (1975). The development of non-foaming yeast strains for wine-making. Vitis 14:43–47.

    Google Scholar 

  • Faris, J. S., Gilmore, R. A. (1974). Genetics of flocculence in Saccharomyces cerevisiae. Genetics 77:s21–22.

    Google Scholar 

  • Fink, G. R. (1970). The biochemical genetics of yeast. Meth. Enzymol. 17A:59–78.

    Google Scholar 

  • Gilmore, R. A., Murphy, J. (1972). Flocculence in Saccharomyces cerevisiae. Genetics 71:s 19–20.

    Google Scholar 

  • Gjermansen, C., Sigsgaard, P. (1981). Construction of a hybrid strain of Saccharomyces carlsbergensis by mating of meiotic segregants. Carlsberg Res. Commun. 46:1–11.

    CAS  Google Scholar 

  • Gunge, N., Nakatomi, Y. (1972). Genetic mechanism of rare matings of the yeast Saccharomyces cerevisiae heterozygous for mating type. Genetics 70:41–58.

    PubMed  CAS  Google Scholar 

  • Hansen, E. C. (1886). Undersogelser over alkoholsjaersvanpenes fysiologi og morfologi. V. Methoder til fremstilling af renkulturer af saccharomyceter og ligende mikroorganismer. Meddr. Carlsberg Lab. 2:152–167.

    Google Scholar 

  • Hansen, E. C. (1888). Undersogelser fra gjaeringsindustriens praxis. Meddr. Carlsberg Lab. 2:257–322.

    Google Scholar 

  • Hara, S., Iimura, Y., Otsuka, K. (1980). Breeding useful killer wine yeasts. Amer. J. Enol.Vitic. 31:28–33.

    Google Scholar 

  • Harashima, S., Nogi, Y., Oshima, Y. 1974. The genetic system controlling homo-thallism in Saccharomyces yeasts. Genetics 77:639–650.

    PubMed  CAS  Google Scholar 

  • Hayashida, S., Feng, D. D., Hongo, M. (1974). Function of the high concentration alcohol-producing factor. Agric. Biol. Chem. 38:2001–2006.

    CAS  Google Scholar 

  • Hayashida, S., Hongo, M. (1976). The mechanism of formation of high concentration alcohol in sake brewing. Fifth Int. Ferm. Symp., Berlin.

    Google Scholar 

  • Hayashida, S., Ohta, K. (1978). Cell structure of yeasts grown anaerobically in Aspergillus oryzae-proteolipid-supplemented media. Agric. Biol. Chem. 42:1139–1145.

    CAS  Google Scholar 

  • Heinzel, M., Triiper, H. G. (1976). Sulfite formation by wine yeasts. II. Properties of ATP-sulfurylase. Arch. Microbiol. 107:293–297.

    CAS  Google Scholar 

  • Hicks, J., Herskowitz, I. (1976). Interconversion of mating types in yeast. I. Direct observations of the action of the homothallism (HO) gene. Genetics 83:245–258.

    PubMed  CAS  Google Scholar 

  • Hinnen, A., Hicks, J. B., Fink, G. R. (1978). Transformation of yeast. Proc. Natl. Acad. Sci. USA 75:1929–1933.

    PubMed  CAS  Google Scholar 

  • Ingraham, J. L., Guymon, J. F. (1960). The formation of higher aliphatic alcohols by mutant strains of Saccharomyces cerevisiae. Arch. Biochem. Biophys. 88:157–166.

    PubMed  CAS  Google Scholar 

  • Ingraham, J. L., Guymon, J. F., Crowell, E. A. (1961). The pathway of formation of n-butyl and n-amyl alcohols by a mutant strain of Saccharomyces cerevisiae. Arch. Biochem. Biophys. 95:169–175.

    CAS  Google Scholar 

  • Johnston, J. R. (1965). Breeding yeasts for brewing. I. Isolation of breeding strains. J. Inst. Brew. 71:130–135.

    Google Scholar 

  • Johnston, J. R., Oberman, H. (1979). Yeast genetics in industry. Prog. Ind. Microbiol. 15:151–205.

    CAS  Google Scholar 

  • Kasahara, H., Ouchi, K., Kurata, K., Ishido, T., Nunokawa, Y. (1974). Genetic characters of non-foaming mutants of sake yeast. J. Ferment. Technol. 52:348–351.

    Google Scholar 

  • Kishkovskaya, S. A., Bur’yan, N. I. (1980). Thermo-tolerant variants of wine yeasts. Microbiology 49:132–135.

    Google Scholar 

  • Kreil, H., Kleber, W., Teuber, M. (1975). Wirkung von Killerfaktoren auf Bierhefen. Proc. 15th Eur. Brew. Conf., pp. 323–331.

    Google Scholar 

  • Kunkee, R. E. (1974). Chemistry of Winemaking, edited by A. D. Webb. Advances in Chemistry Series, No. 137. American Chemical Society, Washington.

    Google Scholar 

  • Kunkee, R. E., Amerine, M. A. (1970). Yeasts in wine-making. The Yeasts, vol. III, edited by J. S. Harrison and A. H. Rose. New York: Academic Press, pp. 5–71.

    Google Scholar 

  • Kunkee, R. E., Goswell R. W. (1977). Table wines. Economic Microbiology, edited by A. H. Rose. New York: Academic Press, pp. 315–386.

    Google Scholar 

  • Kusewicz, D. (1976). The characteristics of cryophilic wine yeast. II. The production and characteristics of cryophilic UV irradiated wine yeast. Acta Aliment. Pol. 2:61–72.

    CAS  Google Scholar 

  • Kusewicz, D., Johnston, J. (1980). Genetic analysis of cryophilic and mesophilic wine yeasts. J. Inst. Brew. 86:25–27.

    Google Scholar 

  • Kusewicz, D., Oberman, H. (1980). Improvement of technological properties of cryophilic wine yeast. VI Int. Ferm. Symp./V Int. Symp. Yeast, London (Canada).

    Google Scholar 

  • Lewis, C. W., Johnston, J. R., Martin, P. A. (1976). The genetics of yeast flocculation. J. Inst. Brew. 82:158–160.

    CAS  Google Scholar 

  • Lodder, J. (1970). The Yeasts. Amsterdam: North-Holland.

    Google Scholar 

  • Momose, H., Okazaki, N., Tonoike, R. (1968). Studies on the aggregation of yeasts caused by lactic acid bacteria. I. Aggregation of yeast in mixture of pure-cultured yeast cells and lactic acid bacterial cells. J. Soc. Brew. Japan. 63:686–688.

    Google Scholar 

  • Mosiashvili, G. I., Shalutashvili, J. D. (1971). (Yeast hybrids for use in winemaking.) Vinodel. i Vinograd. 31:19–20. (In Russian.)

    CAS  Google Scholar 

  • Naumov, G. I. (1974). Comparative genetics of yeast. 14. Analysis of Saccharomyces wine strains neutral to K-2 killer. Sov. Genet. 10:100–105.

    Google Scholar 

  • Naumov, G. I., Kondrat’eva, V. I., Tolstorukov, I. I. (1974). 15. Determination of the character delayed self-diploidization in the yeast Saccharomyces bayanus strain M-180. Sov. Genet. 10: 1167–1171.

    Google Scholar 

  • Naumov, G. I., Naumova, T. I. (1973). Comparative genetics of yeast. 13. Comparative study of killer strains of Saccharomyces from different collections. Sov. Genet. 9:1459–1462.

    Google Scholar 

  • Nickerson, W. J. (1953). Reduction of inorganic substances by yeast. I. Extracellular reduction of sulfite by species of Candida. J. Infectious Diseases 93:43–48.

    CAS  Google Scholar 

  • Nykänen, L., Nykänen, I. (1977). Production of esters by different yeast strains in sugar fermentations. J. Inst. Brew. 83:30–31.

    Google Scholar 

  • Ouchi, K., Akiyama, H. (1971). Nonfoaming mutants of sake yeasts. Selection by cell agglutination method and by froth flotation method. Agric. Biol. Chem. 35:1024–1032.

    Google Scholar 

  • Ouchi, K., Akiyama, H. (1976). Breeding of useful killer sake yeasts by repeated back-crossing. J. Ferment. Technol. 54:615–623.

    Google Scholar 

  • Ouchi, K., Kawashima, H. (1974). (Distribution of killer and neutral strains of sake yeast in the type cultures.) J. Soc. Brew. Japan 69:629–630. (In Japanese.)

    Google Scholar 

  • Ouchi, K., Nunokawa, Y. (1973). Nonfoaming mutants of sake yeast. Their physicochemical characteristics. J. Ferment. Technol. 51:85–95.

    CAS  Google Scholar 

  • Ouchi, K., Takahashi, K., Suzuki, S., Nunokawa, Y. (1973). Nonfoaming mutants of sake yeast. Comparison of the cell wall composition between the parent and mutants. J. Gen. Appl. Microbiol. 19:429–437.

    CAS  Google Scholar 

  • Ouchi, K., Wickner, R. B., Tohe, A., Akiyama, H. (1979). Breeding of killer yeasts for sake brewing by cytoduction. J. Ferment. Technol. 57:483–487.

    CAS  Google Scholar 

  • Pomper, S., Burkholder, P. R. (1949). Studies on the biochemical genetics of yeast. Proc. Natl. Acad. Sci. USA 35:456–464.

    PubMed  CAS  Google Scholar 

  • Rankine, B. C. (1968). The importance of yeasts in determining the composition and quality of wine. Vitis 7:22–49.

    CAS  Google Scholar 

  • Rankine, B. C., (1977). Modern developments in selection and use of pure yeast cultures for winemaking. Aust. Wine, Brewing, and Spirit Rev. 96(8):31–33

    Google Scholar 

  • Rankine, B. C., (1977). Modern developments in selection and use of pure yeast cultures for winemaking. Aust. Wine, Brewing, and Spirit Rev. 96(9):32–34.

    Google Scholar 

  • Roman, H., Hawthorne, D. C., Douglas, H. C. (1951). Polyploidy in yeast and its bearing on the occurrence of irregular genetic ratios. Proc. Natl. Acad. Sci. USA 37:79–84.

    PubMed  CAS  Google Scholar 

  • Roman, H., Sands, S. M. (1953). Heterogeneity of clones of Saccharomyces derived from haploid ascospores. Proc. Natl. Acad. Sci. USA 39:171–179.

    PubMed  CAS  Google Scholar 

  • Romano, P., Zambonelli, C., Soli, M. G. (1976). Biosynthesis of sulphur amino acids in Saccharomyces cerevisiae. II. Analysis of sulphur-dioxide-producing strains. Arch. Microbiol. 108:211–215.

    PubMed  CAS  Google Scholar 

  • Rous, C. V. (1981). Reduction of wine fusel oil by fermentation with a yeast leucine auxotroph. M.S. Thesis, University of California, Davis.

    Google Scholar 

  • Rous, C. V., Kunkee, R. E., Snow, R. (1980). Wine fermentations with amino acidless mutant strains of Montrachet resulting in lowered production of higher alcohols. Thirty-first Annual Meeting of the American Society of Enologists, Los Angeles.

    Google Scholar 

  • Russell, I., Stewart, G. G. (1979). Spheroplast fusion of brewer’s yeast strains. J. Inst. Brew. 85:95–98.

    Google Scholar 

  • Russell, I., Stewart, G. G. (1980). Transformation of maltotriose uptake ability into a haploid strain of Saccharomyces spp. J. Inst. Brew. 86:55–59.

    CAS  Google Scholar 

  • Russell, I., Stewart, G. G. (1981). Liquid nitrogen storage of yeast cultures compared to more traditional storage methods. J. Amer. Soc. Brew. Chem. 39:19–24.

    Google Scholar 

  • Russell, L, Stewart, G. G., Reader, H. P., Johnston, J. R., Martin, P. A. (1980). Revised nomenclature of genes that control yeast flocculation. J. Inst. Brew. 86:120–121.

    Google Scholar 

  • Sakai, K., Takahashi, T. (1972). Estimation of ploidies in brewery yeasts. Bull. Brew. Sci. 18:29–36.

    Google Scholar 

  • Santa Maria, J., Vidal, D. (1973). Genetic control of flor formation by Saccharomyces. J. Bacteriol. 113:1078–1080.

    PubMed  CAS  Google Scholar 

  • Santa Maria, J., Vidal, D., Rodriguez-Marin, M. A. (1973). Análisis genetico de la formación de velo por especies del género Saccharomyces. An. Inst. Nac. Invest. Agrar. (Ser. Gen.) 2:11–20.

    Google Scholar 

  • Schütz, M., Kunkee, R. E. (1977). Formation of hydrogen sulfide from elemental sulfur during fermentation by wine yeast. Amer. J. Enol. Vitic. 28:137–144.

    Google Scholar 

  • Skatrud, P. L., Jaeck, D. M., Kot, E. J., Helbert, J. R. (1980). Fusion of Saccharomyces uvarum with Saccharomyces cerevisiae: genetic manipulation and recon-struction of a brewer’s yeast. J. Amer. Soc. Brew. Chem. 38:49–53.

    Google Scholar 

  • Snow, R. (1979). Toward genetic improvement of wine yeast. Amer. J. Enol. Vitic. 30:33–37.

    Google Scholar 

  • Spencer, J. T. F., Spencer, D. M. (1977). Hybridization of non-sporulating and weakly sporulating strains of brewer’s and distiller’s yeasts. J. Inst. Brew. 83:287–289.

    Google Scholar 

  • Stewart, G. G. (1978). Application of yeast genetics within the brewing industry. A review. J. Amer. Soc. Brew. Chem. 36:175–185.

    CAS  Google Scholar 

  • Takahashi, T. (1978). Genetic analysis of a German wine yeast. Bull. Brew. Sci. 24:39–47.

    Google Scholar 

  • Tauro, P., Rupela, O. P. (1980). Hydrogen sulfide excretion in yeast and the isolation of low H2S excreting wine yeasts. VI Int. Ferm. Symp./V Int. Symp. Yeast, London (Canada).

    Google Scholar 

  • Thornton, R. J. (1978a). The mapping of two dominant genes for foaming in wine yeasts. FEMS Lett. 4:207–209.

    Google Scholar 

  • Thornton, R. J. (1978b). Investigation on the genetics of foaming in wine yeasts. Eur. J. Appl. Microbiol. Biotechnol. 5:103–107.

    Google Scholar 

  • Thornton, R. J., Eschenbruch, R. (1976). Homothallism in wine yeasts. Antonie van Leeuwenhoek 42:503–509.

    PubMed  CAS  Google Scholar 

  • Thornton, R. J., Eschenbruch, R. (1978). The improvement of pure-culture wine yeasts by hybridization. Sixth Int. Special. Symp. Yeasts, Montpellier.

    Google Scholar 

  • Tubb, R. S. (1980). 2-micron DNA plasmid in brewery yeasts. J. Inst. Brew. 86: 78–80.

    CAS  Google Scholar 

  • Tyurina, L. V., Bur’yan, N. I. (1975). Phenotypes (killer, neutral, sensitive) of yeasts of the genus Saccharomyces in viticulture and methods of their determination. Microbiology 44:357–361.

    Google Scholar 

  • Vaughan, A. E., Martini, A. (1980). DNA base composition and DNA-DNA reassociation of the “wine” species of the yeast genus Saccharomyces Hansen. VI Int. Ferm. Symp./V Int. Symp. Yeast, London (Canada).

    Google Scholar 

  • Webb, A. D., Ingraham, J. L. (1963). Fusel oil: a review. Adv. Appl. Microbiol. 5:317–353.

    CAS  Google Scholar 

  • Wickner, R. B. (1979). The killer double-stranded RNA plasmids of yeast. Plasmid 2:303–322.

    PubMed  CAS  Google Scholar 

  • Williams, S. A. (1982). Cloning and expression of the malolactic gene of Lactobacillus delbrueckii in E. coli and yeast. Ph.D. Thesis, University of California, Davis.

    Google Scholar 

  • Wöhrmann, K., Lange, P. (1980). The polymorphism of esterases in yeast (Saccharomyces cerevisiae). J. Inst. Brew. 86:174.

    Google Scholar 

  • Wood, D. R., Bevan, E. A. (1968). Studies on the nature of the killer factor produced by Saccharomyces cerevisiae. J. Gen. Microbiol. 51:115–126.

    Google Scholar 

  • Zambonelli, C. (1964a). Ricerche biometriche sulla produzione di idrogeno solforato da solfati e solfiti in Ricerche biometriche sulla produzione di idrogeno solforato da solfati e solfiti in Saccharomyces cerevisiae var. ellipsoideus. Ann. Microbiol. 14:129–141.

    CAS  Google Scholar 

  • Zambonelli, C. (1964b.) Ricerche genetiche sulla produzione di idrogeno solforato in Ricerche genetiche sulla produzione di idrogeno solforato in Saccharomyces cerevisiae var. ellipsoideus. Ann. Microbiol. 14: 143–153.

    CAS  Google Scholar 

  • Zambonelli, C. (1965a). Richerche genetiche sulla produzione di idrogeno solforato in Saccharomyces cerevisiae var. ellipsoideus. II Ereditarietà del carattere dal punto di vista quantitativo. Ann. Microbiol. 15:89–97.

    Google Scholar 

  • Zambonelli, C. (1965b). Ricerche genetiche sulla produzione di idrogeno solforato in Saccharomyces cerevisiae var. ellipsoideus. III. Ulteriori studi sulla ereditarietà del carattere quantitativo. Ann. Microbiol. 15:99–106.

    Google Scholar 

  • Zambonelli, C. (1965c). Stabilità ed ereditarietà delle variazione nella produzione de H2S indotte dal nitrato fenil-mercurico in Saccharomyces cerevisiae var. ellipsoideus. Ann. Microbiol. 15:181–195.

    CAS  Google Scholar 

  • Zambonelli, C., Guerzone, M. E., Nanni, M., Gianstefani, G. (1972a). Selezione genetica nei lieviti della fermentazione vinaria. 2. Il potere stabilizzante del colore. Revista Vitic. Enol. 25:111–129.

    CAS  Google Scholar 

  • Zambonelli, C., Guerzoni, M. E., Nanni, M. (1972b). Selezione genetica nei lieviti della fermentazione vinaria. 3. La resistenza alla anidride solforosa. Revista Vitic. Enol. 25:170–179.

    CAS  Google Scholar 

  • Zambonelli, C., Guerzoni, M. E., Nanni, M. (1973). Selezione genetica nei lieviti della fermentazione vinaria. 5. La modalita di sviluppo. Revista Vitic. Enol. 26:104–112.

    Google Scholar 

  • Zambonelli, C., Mutinelli, P., Pachetti, G. (1975). Biosynthesis of sulphur amino acids in Saccharomyces cerevisiae. I. Genetic analysis of leaky mutants of sulphite reductase. Arch. Microbiol. 102:247–251.

    PubMed  CAS  Google Scholar 

  • Zambonelli, C., Soli, M. G., Romano, P., Grazia, L. (1976). Influenza del ceppo di lievito sulla stabilità del colore dei vini bianchi. II. Analisi del ceppo 633. Ann. Microbiol. 26:109–118.

    CAS  Google Scholar 

  • Zimmermann, F. K. (1978). On the use of systematically selected yeasts in large wineries. Proc. 5th Int. Oenol. Symp., Aukland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Snow, R. (1983). Genetic Improvement of Wine Yeast. In: Spencer, J.F.T., Spencer, D.M., Smith, A.R.W. (eds) Yeast Genetics. Springer Series in Molecular Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5491-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5491-1_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5493-5

  • Online ISBN: 978-1-4612-5491-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics