Skip to main content

Mechanisms of Space Constancy

  • Chapter

Abstract

The problem of space constancy despite movements of the eye is one of information selection. The perceptual system is concerned with the identification of objects, faces, letters of the alphabet, etc., and must be independent of changes in the retinal image that accompany saccadic eye movements. At the same time, the perceptual system must know with great sensitivity about displacements of objects in the world. A space constancy system, therefore, must null retinal information about eye movements while preserving information about movement in the world. Properties of the image that specify events in the world must be processed, while those that specify properties of retinal motion itself must be eliminated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bahill, A. T., Clark, M. E., & Stark, L. Dynamic overshoot in saccadic eye movements is caused by neurological control signal reversals. Experimental Neurology, 1975,48, 95–112.

    Article  PubMed  CAS  Google Scholar 

  • Beeler, G. Visual threshold changes resulting from spontaneous saccadic eye movements. Vision Research, 1967, 7, 769–775.

    Article  PubMed  Google Scholar 

  • Bridgeman, B. Cognitive factors in subjective stabilization of the visual world. Acta Psychologica, 1981, 48, 111–121.

    Article  PubMed  CAS  Google Scholar 

  • Bridgeman, B., Hendry, D., & Stark, L. Failure to detect displacement of the visual world during saccadic eye movements. Vision Research, 1975,15, 719–722.

    Article  PubMed  CAS  Google Scholar 

  • Bridgeman, B., Lewis, S., Heit, G., & Nagle, M. The relationship between cognitive and motor-oriented systems of visual position perception. Journal of Experimental Psychology: Human Perception and Performance, 1979, 5, 692–700.

    Article  PubMed  CAS  Google Scholar 

  • Bridgeman, B., & Stark, L. Omnidirectional increase in threshold for image shifts during saccadic eye movements. Perception and Psychophysics, 1979, 25, 241–243.

    Article  PubMed  CAS  Google Scholar 

  • Bridgeman, B., & Stark, L. Efferent copy and visual direction. Investigative Ophthalmology and Visual Science (Supplement), 1981,20, 55.

    Google Scholar 

  • Brune, F., & Lucking, C. H. Oculomotorik, Bewegungswahrnehmung und Raum-konstanz der Sehdinge. Der Nervenarzt, 1969, 40, 413–421.

    PubMed  CAS  Google Scholar 

  • Delgado, D., & Bridgeman, B. Foreground/background constancy during visual fixation. Investigative Ophthalmology and Visual Science Supplement, 1982,22, 86.

    Google Scholar 

  • Descartes, R. [Treatise of man] (T. H. Hall, trans.). Cambridge, Mass.: Harvard University Press, 1972. (Originally published, 1664.)

    Google Scholar 

  • Ditchburn, R. Eye-movements in relation to retinal action. Optica Acta, 1955, 1, 171–176.

    Article  Google Scholar 

  • Gibson, J. J. The perception of the visual world. Boston: Houghton Mifflin, 1950.

    Google Scholar 

  • Gibson, J. J. The senses considered as perceptual systems. Boston: Houghton Mifflin, 1966.

    Google Scholar 

  • Helmholtz, H. von. [A treatise on physiological optics] (J. P. C. Southall, Ed. and trans.). New York: Dover, 1962. (Originally published, 1866.)

    Google Scholar 

  • Hering, E. [The theory of binocular vision] (B. Bridgeman, trans., and B. Bridge-man & L. Stark, Eds.). New York: Plenum Press, 1977. (Originally published, 1868.)

    Google Scholar 

  • Hey wood, S. Detection of displacement during saccades: Spatial and functional differences allied to preprogramming. Acta Psychologica, 1981, 48, 141–149.

    Article  CAS  Google Scholar 

  • Hey wood, S., & Churcher, J. Direction-specific and position-specific effects upon detection of displacements during saccadic eye movements. Vision Research, 1981,21, 255–261.

    Article  CAS  Google Scholar 

  • Hoist, E. von, & Mittelstaedt, H. Das Reafferenzprinzip: Wechselwirkungen zwischen Zentralnervensystem und Peripherie. Naturwissenschaften, 1950, 37, 464–476.

    Article  Google Scholar 

  • Johnson, C. A., & Scobey, R. P. Foveal and peripheral displacement thresholds as a function of stimulus luminance, line length and duration of movement. Vision Research, 1980, 709–715.

    Google Scholar 

  • Kohler, I. [The formation and transformation of the perceptual world] (H. Fiss, trans.). New York: International Universities Press, 1964. (Originally published, 1951.)

    Google Scholar 

  • Mack, A. An investigation of the relationship between eye and retinal image movement in the perception of movement. Perception and Psychophysics, 1970, 8, 291–298.

    Article  Google Scholar 

  • Mack, A., Fendrich, R., & Pleune, J. Adaptation to an altered relation between retinal image displacements and saccadic eye movements. Vision Research, 1978, 18, 1321–1327.

    Article  PubMed  CAS  Google Scholar 

  • Maay, D. Visual stability. Investigative Ophthalmology, 1972,11, 518–524.

    Google Scholar 

  • Maay, D. M. Visual stability and voluntary eye movements. In R. Jung (Ed.), Handbook of sensory physiology (Vol. VII, Part 3): Central visual information A. Berlin: Springer-Verlag, 1973.

    Google Scholar 

  • Orban, G., Duysens, J., & Callens, M. Movement perception during voluntary saccadic eye movements. Vision Research, 1973,13, 1343–1353.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, G. E. Two visual systems. Science, 1969,163, 895–902.

    Article  PubMed  CAS  Google Scholar 

  • Sperry, R. Neural basis of spontaneous optokinetic response produced by visual inversion. Journal of Comparative and Physiological Psychology, 1950, 43, 482–489.

    Article  PubMed  CAS  Google Scholar 

  • Stark, L., Kong, R., Schwartz, S., Hendry, D., & Bridgeman, B. Saccadic suppression of image displacement. Vision Research, 1976,16,1185–1187.

    Article  PubMed  CAS  Google Scholar 

  • Trevarthen, C. Two mechanisms of vision in primates. Psychologische Forschung, 1968, 31, 299–337.

    Article  PubMed  CAS  Google Scholar 

  • Wallach, H. Eye movement and motion perception. In A. Wertheim, W. Wagenaar, & H. Leibowitz (Eds.), Tutorials on motion perception. New York: Plenum Press, 1982.

    Google Scholar 

  • Wallach, H., & Lewis, C. The effect of abnormal displacement of the retinal image during eye movements.Perception and Psychophysics, 1965,1, 25–29.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Bridgeman, B. (1983). Mechanisms of Space Constancy. In: Hein, A., Jeannerod, M. (eds) Spatially Oriented Behavior. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5488-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5488-1_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5490-4

  • Online ISBN: 978-1-4612-5488-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics