Mechanisms of Urine Concentration

  • Robert W. Berliner
Conference paper

Abstract

In this issue of “The Forum” we make a modest departure from our usual, case-oriented discussion. Because basic scientific principles form the backbone of all pathophysiologic reasoning, we present here a strictly physiologic discussion of the development of the countercurrent hypothesis of urine concentration and dilution. The way in which this theory developed exemplifies several recurrent themes in the history of science; valid hypotheses ignored for years, new observations forced into an outmoded theoretical framework, false pathways traversed because of erroneous experimental data, clinical acceptance of a new hypothesis, and lingering doubts that motivate additional studies forcing refinement of existing “truths.”

Keywords

Permeability Sucrose Hydrated Filtration Phenol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith HW: The Kidney. Oxford Univ. Press, New York, 1951, p. 10Google Scholar
  2. 2.
    Frank J, Mayer JE: An osmotic diffusion pump. Arch Biochem 14: 297–313, 1947Google Scholar
  3. 3.
    Brodsky WA, Rehm WS, Dennis WH, Miller DC: Thermodynamic analysis of the intracellular osmotic gradient hypothesis of active water transport, Science 121: 302–303, 1955PubMedCrossRefGoogle Scholar
  4. 4.
    Wirz H, Hargitay B, Kuhn W: Lokalisation des konzentrierungsprozesses in der niere durch direkte kryoskopie. Helv Physiol Acta 9: 196–207, 1951Google Scholar
  5. 5.
    Peter K: Untersuchungen uber bau und entwicklung der niere, [ena, Fischer, 1909Google Scholar
  6. 6.
    Filehne W, Biberfeld H: Beitrage zue diurese. Arch Ges Physiol 91: 569–573, 1902CrossRefGoogle Scholar
  7. 7.
    Hirokawa W: Ueber den osmotischen druck des nierenparanchyms, Hofmeisters Beitr Physiol Pathol11: 458–478, 1908Google Scholar
  8. 8.
    Gottschalk CW, Mylle M: Micropuncture study of the mammalian urinary concentrating mechanism: Evidence for the countercurrent hypothesis. Am J Physiol 196: 927–936, 1959PubMedGoogle Scholar
  9. 9.
    Burgess WW, Harvey AM, Marshall EK Jr: The site of the antidiuretic action of pituitary extract. J Pharmacol Exp Ther 49: 237–249, 1933Google Scholar
  10. 10.
    Sawyer WH: Increased renal reabsorption of osmotically free water by the toad (Bufo marinus) on response to neurohypophysial hormones. Am J Physiol 189: 564–568, 1957PubMedGoogle Scholar
  11. 11.
    Crane MM: Observations on the function of the frog’s kidney. Am J Physiol 81: 232, 1927Google Scholar
  12. 12.
    Walker AM, Bott PA, Oliver J, MacDowell MD: The collection and analysis of fluid from single nephrons of the mammalian kidney. Am J Physiol 134: 580–595, 1941Google Scholar
  13. 13.
    Hargitay B, Kuhn W: Das multiplikationsprinzip als grundlage der harnkonzentrierung in der niere. Z Elektrochem 55: 539–558, 1951Google Scholar
  14. 14.
    Kuhn W, Ryffel K: Herstellung konzentrierter losungen aus verdunnten durch blosse membranwirkung. Ein modellversuch zur funktion der niere. Z Physiol Chern 276: 145–147, 1942CrossRefGoogle Scholar
  15. 15.
    Ullrich KJ, Drenckhahn FO, Jarausch KH: Untersuchungen zum problem der harnkonzentrierung und verdunnung. Ueber das osmotische verhalten von nierenzellen und die begleitende elektrolytanhaufung im nierendewebe bei verschiedenen diuresezunstanden. Arch Ges Physiol 261: 62–77, 1955CrossRefGoogle Scholar
  16. 16.
    Wirz H: Der osmotische druck des blutes in der nierenpapille. Helv Physiol Acta 11: 20–29, 1953Google Scholar
  17. 17.
    Wirz H: Der osmotische druck in den corticalen tubuli der rattenniere. Helv Physiol Pharmacol Acta 14: 353–362, 1956PubMedGoogle Scholar
  18. 18.
    Berliner RW, Davidson DG: Production of hypertonic urine in the absence of pituitary antidiuretic hormone. J Clin Invest 36: 1416–1427, 1957PubMedCrossRefGoogle Scholar
  19. 19.
    Berliner RW, Levinsky NG, Davidson DG, Eden M: Dilution and concentration of the urine and the action of antidiuretic hormone. Am J Med 24: 730–733, 1958PubMedCrossRefGoogle Scholar
  20. 20.
    Jamison RL, Bennett CM, Berliner RW: Countercurrent multiplication by the thin loops of Henle. Am J Physiol 212: 357–366, 1967PubMedGoogle Scholar
  21. 21.
    Jamison RL: Micropuncture study of segments of thin loop of Henle in the rat. Am J Physiol 215: 236–242, 1968PubMedGoogle Scholar
  22. 22.
    Morgan T, Berliner RW: Permeability of the loop of Henle, vasa recta, and collecting duct to water, urea, and sodium. Am J PhysioI215: 108–115, 1968Google Scholar
  23. 23.
    Kokko JP: Sodium chloride and water transport in the descending limb of Henle. J Clin Invest 49: 1838–1846, 1970PubMedCrossRefGoogle Scholar
  24. 24.
    Imai M, Kokko JP: Sodium chloride, urea, and water transport in the thin ascending limb of Henle: Generation of osmotic gradients by passive diffusion of solutes. J Clin Invest 53: 393–402, 1974PubMedCrossRefGoogle Scholar
  25. 25.
    Burg MB, Green N: Function of the thick ascending limb of Henle’s loop. Am J Physiol 224: 659–668, 1973PubMedGoogle Scholar
  26. 26.
    Rocha AS, Kokko JP: Sodium chloride and water transport in the medullary thick ascending limb of Henle. J Clin Invest 52: 612–623, 1973PubMedCrossRefGoogle Scholar
  27. 27.
    Morgan T: Permeability of the thin limbs of the loop of Henle. Proc 5th Intl Congr Nephrol 2: 105–111, 1972Google Scholar
  28. 28.
    Marsh DJ, Azen SP: Mechanism of NaCl reabsorption by hamster thin ascending limbs of Henle’s loop. Am J Physiol 228: 71–79, 1975PubMedGoogle Scholar
  29. 29.
    Imai M: Function of the thin ascending limb of Henle of rats and hamsters perfused in vitro. Am J Physiol 232: F201–F209, 1977PubMedGoogle Scholar
  30. 30.
    Marsh DJ: Hypo-osmotic re-absorption due to active salt transport in perfused collecting ducts of the rat renal medulla. Nature 210: 1179–1180, 1966PubMedCrossRefGoogle Scholar
  31. 31.
    Hilger HH, Klumper JD, Ullrich KJ: Wasserruckresorption und ionentransport durch die sammelrohrzellen der saugetiernier. Pfluegers Arch 267: 218–237, 1958CrossRefGoogle Scholar
  32. 32.
    Pinter GG, Shohet JL: Origin of sodium concentration profile in the renal medulla. Nature 200: 955–958, 1963PubMedCrossRefGoogle Scholar
  33. 33.
    Marumo F, Yoshikawa Y, Koshikawa S: A study on the concentration mechanism of the renal medulla by mathematical model. Jpn Circ J 31: 1309–1317, 1967PubMedCrossRefGoogle Scholar
  34. 34.
    Stephenson JL: Concentration in renal counterflow systems. Biophys J 6: 539–551, 1966PubMedCrossRefGoogle Scholar
  35. 35.
    Stephenson JL: Concentration of urine in a central core model of the renal counterflow system. Kidney Int 2: 85–94, 1972PubMedCrossRefGoogle Scholar
  36. 36.
    Kokko JP, Rector FC Jr: Countercurrent multiplication system without active transport in inner medulla. Kidney Int 2: 214–223, 1972PubMedCrossRefGoogle Scholar
  37. 37.
    Gamble JL, McKhann CF, Butler AM, Tuthill E: An economy of water in renal function referable to urea. Am J Physiol109: 139–154, 1934Google Scholar
  38. 38.
    Crawford JD, Doyle AP, Probst JH: Service of urea in renal water conservation. Am J Physiol 196: 545–548, 1959PubMedGoogle Scholar
  39. 39.
    Levinsky NG, Berliner RW: The role of urea in the urine concentrating mechanism. J Clin Invest 38: 741–748, 1959PubMedCrossRefGoogle Scholar
  40. 40.
    De Rouffignac C, Morel F: Micropuncture study of water, electrolytes, and urea movements along the loops of Henle in Psammomys. J Clin Invest 48: 474–486, 1969PubMedCrossRefGoogle Scholar
  41. 41.
    Jamison RL, Roinel N, De Rouffignac C: Urinary concentrating mechanism in the desert rodent Psammomys obesus. Am J Physiol 236: F448–F453, 1979PubMedGoogle Scholar
  42. 42.
    Pennell JP, Lacy FB, Jamison RL: An in vivo study of the concentrating process in the decending limb of Henle’s loop. Kidney Int 5: 337–347, 1974PubMedCrossRefGoogle Scholar
  43. 43.
    Johnston PA, Battilana CA, Lacy FB, Jamison RL: Evidence for a concentration gradient favoring outward movement of sodium from the thin loop of Henle. J Clin Invest 59: 234–240, 1977PubMedCrossRefGoogle Scholar
  44. 44.
    Bonventre JV, Lechene C: Renal medullary concentrating process: An integrative hypothesis. Am J Physiol 239: F578–F588, 1980PubMedGoogle Scholar
  45. 45.
    Smith HW: The fate of sodium and water in the renal tubules. Bull NY Acad Med 35: 293–316, 1959Google Scholar

Copyright information

© International Society of Nephrology 1983

Authors and Affiliations

  • Robert W. Berliner

There are no affiliations available

Personalised recommendations