Skip to main content

Extrapolating photolysis rates from the laboratory to the environment

  • Conference paper
Residue Reviews

Part of the book series: Residue Reviews ((RECT,volume 85))

Abstract

Assessing the sunlight photoreactivity of new pesticides has become common- place in the last decade in recognition of the effects the sun has on the dissipation rate of organic chemicals and their transformation products in various environmental compartments. Several reviewers have summarized research dealing with both the kinetic aspects (Zepp and Cline 1977, Smith et al. 1977, Zepp 1979 and 1980, Zepp and Baughman 1978) and the photoproduct distributions (Sundstrom and Ruzo 1978, Crosby 1979. Moilanen et al. 1975).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akermark, B.: Photodechlorination of haloaromatic compounds. In F. Cattabeni, A. Cavallaro, and G. Galli (eds): Dioxin: Toxicological and chemical aspects, p. 191. New York: Spectrum Publishers (1978).

    Google Scholar 

  • Burkhard, N., and J. A. Guth: Photodegradation of atrazine, atraton and ametryne in aqueous solution with acetone as a photosensitizer. Pest. Sci. 7, 65 (1976).

    Article  CAS  Google Scholar 

  • Burkhard, N., and J. A. Guth: Photolysis of organophosphorous insecticides on soil surfaces. Pest. Sci. 10, 313 (1979).

    Article  CAS  Google Scholar 

  • Burkhard, N. D., O. Eberle and J. A. Guth: Model systems for studying the environmental behavior of pesticides. In F. Coulstron and F. Korte (eds.): Environmental quality and safety, p. 20. Stuttgart: Georg Thieme (1975).

    Google Scholar 

  • Calvert, J. G., and J. N. Pitts: Photochemistry. New York: Wiley (1966).

    Google Scholar 

  • Chou, S. S., and M. Eto: Effects of paddy water and some photosensitizers on the photolysis of the fungicide isoprothiolane. J. Environ. Sci. Health B 15, 135 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Comes, R. D., and F. L. Timmons: Effect of sunlight on the phytotoxicity of some phenylurea and triazene herbicides on a soil surface. Weeds 13, 81 (1965).

    Article  CAS  Google Scholar 

  • Crosby, D. G.: The significance of light induced pesticide transformations. In N. Geissbuehler (ed.): Advances in pesticide science, p. 568. Oxford: Perma-gon Press (1979).

    Google Scholar 

  • Crosby, D. G., and K. W. Moilanen: Vapor-phase photodecomposition of DDT. Chemosphere p. 167 (1977).

    Google Scholar 

  • Crosby, D. G., A. S. Wong, J. R. Plimmer, and E. A. Woolson: Photodecomposition of chlorinated dibenzo-p-dioxins. Science 173, 748 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Cupitt, L. T.: Fate of toxic and hazardous materials in the air environment. U.S. Environmental Protection Agency, Athens, GA. EPA-600/53-80-084 (1980).

    Google Scholar 

  • Demayo, P., and H. Shizuka: In W. R. Ware (ed.): Creation and detection of the excited state, Vol. 4, Chapt. 4. New York: Marcel Dekker (1976).

    Google Scholar 

  • Demerjian, K. L., J. A. Keer, and J. G. Calvert: The mechanism of photochemical smog formation. In J. N. Pitts, Jr., R. L. Metcalf, and A. C. Lloyd (eds.): Advances in environmental science and technology, Vol. 4, p. 1. New York: Wiley (1974).

    Google Scholar 

  • Dilling, W. L., and H. K. Goersch: Organic photochemistry. XVI. Tropospheric photodecomposition of methylene chloride. In R. Hague (ed.): Dynamics, exposure and hazard assessment of toxic chemicals, p. 111. Michigan: Ann Arbor Science Publishers (1980).

    Google Scholar 

  • Draper, W. M., and D. G. Crosby: Hydrogen peroxide and hydroxyl radical: intermediates in indirect photolysis reactions in water. J. Agr. Food Chem 29, 699 (1981).

    Article  CAS  Google Scholar 

  • Fisher, G. J., J. C. Leblanc, and H. E. Johns: A calorimetric determination of the quantum yield for the ionization of malachite green cyanide by ultraviolet radiation. Photochem. Photobiol. 6, 757 (1967).

    Article  CAS  Google Scholar 

  • Guth, J. A.: Experimental approaches to studying the fate of pesticides in soil. In D. H. Huston and T. R. Roberts (eds.): Progress in pesticide biochemistry, Vol. 1, p. 85. New York: Wiley (1980).

    Google Scholar 

  • Huatala, R.: Surfactant effects on pesticide photochemistry in water and soil. U.S. Environmental Protection Agency, Athens, GA, p. 175. EPA-600/3-78-060. U.S. NTIS PB, Rep. PB-285 (1978).

    Google Scholar 

  • Hill, G. D., J. W. McGahran, H. M. Baker, D. W. Finnerty, and G. W. Bingeman: The fate of substituted urea herbicides on agricultural soils. Agron J 47, 93 (1955).

    Article  CAS  Google Scholar 

  • Ku, C. C.: Fate of mephofolan in a simulated rice paddy ecosystem. Diss. Abstr. Int. B 39, 3224 (1979).

    Google Scholar 

  • Ku, C. C., I. P. Kepoor, S. J. Stout, and J. D. Rosen: Photodegradation of Cytrolane (mephosfolan) systemic insecticide in the aquatic environment using carbon 13 as a mass tracer. J. Agr. Food Chem. 27, 1046 (1979).

    Article  CAS  Google Scholar 

  • Lamola, A. A., and G. S. Hammond: Intersystem crossing efficiencies. J. Chem. Phys. 41, 2129 (1965).

    Article  Google Scholar 

  • Leighton, P. A.: Photochemistry of air pollution. New York: Academic Press (1961).

    Google Scholar 

  • Liberti, A., A. Brocco, I. Allegrini, and G. Bertoni: Field photodegradation of TCDD by ultraviolet radiation. In F. Cattabeni, A. Cavallaro and G. Galli (eds.): Dioxin: Toxicological and chemical aspects, p. 195. New York: Spectrum Publishers (1978).

    Google Scholar 

  • Matsumura, F., and E. G. Esaac: Degradation of pesticides by algae and aquatic microorganisms. Amer. Chem. Soc. Symp. Ser. 99, p. 371 (1979).

    CAS  Google Scholar 

  • Messersmith, C. G., O. C. Burnside, and T. L. Lavy: Biological and non-biological dissipation of trifluralin from soil. Weed Sci. 19, 959 (1971).

    Google Scholar 

  • Mill, T., D. Dulia, and J. Davenport: Development and evaluation of sunlight actinometers. EPA Report (Draft) EPA Contract 68-01-6325 (1981).

    Google Scholar 

  • Mill, T., W. R. Mabey, D. C. Bomberger, T-W. Chou, D. G. Hendry, and J. H. Smith: Laboratory protocols for evaluating the fate of organic chemicals in air and water. SRI International Menlo Park, CA. Prepared by Environmental Protection Agency, Athens, GA (1980).

    Google Scholar 

  • Miller, G. C.: Unpublished work, University of Nevada, Reno (1981).

    Google Scholar 

  • Miller, G. C., M. J. Millie, D. G. Crosby, S. Sontum and R. G. Zepp: Photosolvolysis of, 3, 4-dichloroaniline in water. Tetrahedron 33, 1797 (1979).

    Article  Google Scholar 

  • Miller, G. C., R. Zisook, and R. G. Zepp: Photolysis of, 4-dichloroanüine in natural waters. J. Agr. Food Chem. 28, 105 (1980).

    Article  Google Scholar 

  • Miyamoto, J.: Degradation of fenitrothion in terrestrial and aquatic environments including photolytic and microbial reactions. In J. R. Roberts, R. Greenhulgh, and W. K. Marshall (eds.): Proceedings of a symposium on fenitrothion, p. 105. Ottawa: Nat’l Res. Council Can. NRCC/CNRC No. 16073 (1977).

    Google Scholar 

  • Moilanen, K. W., D. G. Crosby, C. J. Soderquist, and A. S. Wong: Dynamic aspects of pesticide photodecomposition. In R. Hauge and V. H. Freed (eds.): Environmental dynamics of pesticides, p. 45. New York: Plenum Press (1975).

    Google Scholar 

  • Murov, S. L., Handbook of photochemistry. New York: Marcel Dekker (1973).

    Google Scholar 

  • Nassar, A. R., and W. Ebing: Photodecomposition and volatility of cis-and trans-diallate. Egypt J. Soil Sci. 18, 137 (1979).

    Google Scholar 

  • Nilles, G. P., and M. J. Zabik: Photochemistry of bioactive compounds. Multiple photodegradation and mass spectral analysis of basagran. J. Agr. Food Chem. 23, 410 (1975).

    Article  CAS  Google Scholar 

  • Pitts, J. N., J. M. Vernon, and J. K. S. Wan: A rapid actinometer for photochemical air pollution studies. Internat. J. Air Water Poll. 6, 757 (1975).

    Google Scholar 

  • Plimmer, J. R.: Photolysis of TCDD and trifluralin on silica and soil. Bull. Environ. Contam. Toxicol. 20, 87 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Ross, R. D., and D. G. Crosby: The photo oxidation of aldrin in water. Chemo-sphere 4, 227 (1975).

    Google Scholar 

  • Seiber, J. N., G. A. Ferreira, B. Hermann, and J. E. Woodrow: Analysis of pesticide residue in the air near agricultural treatment sites. In J. Harvey, Jr. and G. Zweig (eds.): Pesticide analytical methodology, p. 176. Washington, D.C.: American Chemical Society (1980).

    Google Scholar 

  • Smith, C. A., Y. Iwata, and F. A. Gunther: Conversion and disappearance of methi-dathion on thin layers of soil dust. J. Agr. Food Chem. 25, 959 (1978).

    Article  Google Scholar 

  • Smith, J. H., W. R. Mabey, N. Bohonos, B. R. Holt, S. S. Lee, T. W. Chou, D. C. Bomberger, and T. Mill: Environmental pathways of selected chemicals in fresh water systems. Part I: Background and experimental approach. U.S. Environmental Protection Agency, Athens, GA. EPA-600/7-77-113 (1977).

    Google Scholar 

  • Spencer, W. F., J. D. Adams, T. D. Shoup, and R. C. Spear: Conversion of para-thion to paraoxon on soil dusts and clay minerals as affected by ozone and UV light. J. Agr. Food Chem. 28, 369 (1980).

    Google Scholar 

  • Sundstrom, G., and L. O. Ruzo: Photochemical transformation of pollutants in water. Permagon Ser. Environ. Sci. 1, 202 (1978).

    Google Scholar 

  • Turner, E. (ed.): An assessment of test methods of photodegradation of chemicals in the environment. Brussels, Belgium: European Chemical Industry, Ecology and Toxicology Center (1981).

    Google Scholar 

  • Turro, N. J., V. Rasmamurthy, W. Cherry, and W. Farneth: The effect of wavelength on organic reactions in solution reactions from upper excited states. Chem. Rev. 78, 125 (1978).

    Article  CAS  Google Scholar 

  • Tseng, S. S., and S. Chang: Photochemical synthesis of simple organic free radicals on simulated planetary surfaces—An ESR study. Origins of Life. 6, 61 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Veslay, G. F.: Complications in measuring quantum yields using cylindrical sample cells. Mol. Photochem. 3, 193 (1971).

    Google Scholar 

  • Woodrow, J. E., J. N. Selber, D. G. Crosby, K. W. Moilanen, C. Mourer, C. H. Soderquist, and W. L. Winterlin: The environmental fate of parathion in a treated orchard. 170th Amer. Chem. Soc. Meeting, Chicago. Pesticide Division Abstract #125 (1975).

    Google Scholar 

  • Woodrow, J. E., D. G. Crosby, T. Mast, K. W. Moilanen, and J. N. Seiber: Rates of transformation of trifluralin and parathion vapors in air. J. Agr. Food Chem. 26, 1312 (1978).

    Article  CAS  Google Scholar 

  • Zepp, R. G.: Assessing the photochemistry of organic pollutants in aquatic environments. In R. Haque, (ed.): Dynamics, exposure and hazard assessment of toxic chemicals, p. 69. Ann Arbor Science (1979).

    Google Scholar 

  • Zepp, R. G. Experimental approaches to environmental photochemistry. In O. Hut-zinger (ed.): Handbook of environmental chemistry. Berlin: Springer-Vail (1980).

    Google Scholar 

  • Zepp, R. G., and G. L. Baughman: Prediction of photochemical transformation of pollutants in the aquatic environment. In O. Hutzinger, I. H. von Lelyveld, and B. C. S. Zoetman (eds.): Aquatic pollutants: Transformation and biological effects, p. 237. New York: Pergamon Press (1978).

    Google Scholar 

  • Zepp, R. G., and D. M. Cline: Rates of direct photolysis in aquatic environment. Environ. Sci. Technol. 4, 359 (1977).

    Article  Google Scholar 

  • Zepp, R. G., G. L. Baughman, and P. F. Schlotzhauer: Comparison of photochemical behavior of various humic substances in water: I. Sunlight induced reactions of aquatic pollutants photosensitized by humic substances. Chemosphere 10, 119 (1981 a).

    Article  CAS  Google Scholar 

  • Zepp, R. G., G. L. Baughman, and P. F. Schlotzhauer: Comparison of photochemical behavior of various humic substances in water: II. Photosensitized oxidations. Chemosphere 10, 110 (1981 b).

    Google Scholar 

  • Zepp, R. G., and P. F. Schlotzhauer: Comparison of photochemical behavior of various humic substances in water: III. Spectroscopic properties of humic substances. Chemosphere 10, 479 (1981).

    Article  Google Scholar 

  • Zepp R. G. N. L. Wolfe J. A. Gordon and R. C. Fincher light-induced transformations of methoxychlor in aquatic systems. J. Agr. Food Chem. 24 727 1976.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag New York Inc.

About this paper

Cite this paper

Miller, G.C., Zepp, R.G. (1983). Extrapolating photolysis rates from the laboratory to the environment. In: Gunther, F.A., Gunther, J.D. (eds) Residue Reviews. Residue Reviews, vol 85. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5462-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5462-1_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5464-5

  • Online ISBN: 978-1-4612-5462-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics