Skip to main content
Book cover

Fritz John pp 258–266Cite as

Birkhäuser

Derivatives of Continuous Weak Solutions of Linear Elliptic Equations

  • Chapter
  • 317 Accesses

Part of the book series: Contemporary Mathematicians ((CM))

Abstract

Let L be a linear elliptic differential operator in n-space of order m. Let M denote the adjoint operator to L. An integrable function u is called a weak solution of the equation L[u] = f in a domain D, if for every w of class C , which vanishes outside a compact subset of D, the relation

$$ \int_D {(uM[w]) - fw)d{x_1}...d{x_n}} $$

holds; u will be called a strict solution, if u is of class C m and satisfies L[u] =f in the ordinary sense. One of the remarkable facts concerning elliptic equations is that under suitable regularity assumptions on f and the coefficients of L a weak solution can be differentiated any number of times and is a strict solution. In a recent paper F. E. Browder1 gives the theorem: a weak solution which is square integrable on every compact subset of D is almost everywhere equal to a strict solution, provided f is in C 1 and the coefficients of the j-th derivatives in the operator L are in C m+i . Browder’s proof of this generalization of “Weyl’s lemma” makes use of the fundamental solution of elliptic equations with analytic coefficients.2 Results contained in a paper by K. O. Friedrichs,3 which appears in the same issue, imply the theorem that a weak solution is a strict solution, provided f is in C (n+1)/2 and the coefficients of L are in C m/2.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

John, F. (1985). Derivatives of Continuous Weak Solutions of Linear Elliptic Equations. In: Moser, J. (eds) Fritz John. Contemporary Mathematicians. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-5406-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5406-5_16

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-5408-9

  • Online ISBN: 978-1-4612-5406-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics