Gas Chromatography for Analysis of Trace Amines in Tissues and Body Fluids

  • Glen B. Baker
  • Ronald T. Coutts
  • Ian L. Martin


The application of gas chromatography to analysis of trace amines and their metabolites in tissues and body fluids is reviewed. Studies using techniques developed by the authors, i.e. acetylation followed by perfluoroacylation for electron-capture gas chromatography, are described in detail. The advantages and disadvantages of gas chromatography relative to other analytical techniques are outlined, and the possible future directions of gas chromatographic analysis of trace amines are discussed.


Trace Amine Mass Fragmentography Nitrogen Detection Related Amine Pentafluoropropionic Anhydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Argauer R. J. (1968) Rapid procedure for the chloroacetylation of microgram quantities of phenols and detection by electron-capture gas chromatography. Anal. Chem. 40, 122–124.PubMedCrossRefGoogle Scholar
  2. Bailey E. and Barron E. J. (1980) Determination of tranylcypromine in human plasma and urine using high-resolution gas-liquid chromatography with nitrogen sensitive detection. J. Chromatogr. Biomed. Appl. 183, 25–31.CrossRefGoogle Scholar
  3. Baker G. B., Calverley D. G., Dewhurst W. G., and Martin I. L. (1979) A sensitive gas chromatographic technique for quantification of urinary tryptamine. Br. J. Pharmac. 67, 469P–470 P.Google Scholar
  4. Baker G. B., Coutts R. T., and Martin I. L. (1981) Analysis of amines in the central nervous system by gas chromatography with electron-capture detection. Progr. Neurobiol. 17, 1–24.CrossRefGoogle Scholar
  5. Baker G. B., LeGatt D. F., and Coutts R. T. (1982) A gas chromatographic procedure for quantification of para-tyramine in rat brain. J. Neurosci. Methods 5, 181–188.PubMedCrossRefGoogle Scholar
  6. Blau K., Claxton I. M., Ismahan G., and Sandler M. (1979) Urinary phenylethylamine excretion: gas chromatographic assay with electron-capture detection of the pentafluorobenzoyl derivative. J. Chromatogr. Biomed. Appl. 163, 135–142.CrossRefGoogle Scholar
  7. Blau K., King G. S., and Sandler M. (1977) Mass spectrometric and nuclear magnetic resonance confirmation of a 3,3-spirocyclic indole derivative formed from melatonin and related acyl tryptamines. Biomed. Mass Spectrom. 4, 232–236.PubMedCrossRefGoogle Scholar
  8. Borison R. L., Mosnaim A. D., and Sabelli H. C. (1974) Biosynthesis of brain 2-phenylethylamine: influence of decarboxylase inhibitors and D-amphetamine. Life Sci. 15, 1837–1848.PubMedCrossRefGoogle Scholar
  9. Boulton A. A., Juorio A. V., Philips S. R., and Wu P. H. (1975) Some arylalkylamines in rabbit brain. Brain Res. 96, 212–216.PubMedCrossRefGoogle Scholar
  10. Calverley D. G., Baker G. B., McKim H. R., and Dewhurst W. G. (1980) A gas chromatograph technique using electron-capture detection for simultaneous estimation of tryptamine and 5-hydroxytryptamine in biological tissue. Can. J. Neurol. Sci. 7, 237.Google Scholar
  11. Cole W. J., Parkhouse J., and Yousef Y. Y. (1977) Application of the extractive alkylation technique to the pentafluorobenzoylation of morphine (a heroin meta-bolite) and surrogates, with special reference to the quantitative determination of plasma morphine levels using mass fragmentography. J. Chromatogr. 136, 409–416.PubMedCrossRefGoogle Scholar
  12. Cone E. J., Risner M. E., and Neidert G. L. (1978) Con-centrations of phenethylamine in dog following single doses and during intravenous self-administration. Res. Commun. Chem. Path. Pharmacol. 22, 211– 232.Google Scholar
  13. Coutts R. T., Baker G. B., and Calverley D. G. (1980) A rapid, sensitive method of measuring meta- and para-tyramine levels in urine using electron-capture gas chromatography. Res. Commun. Chem. Path. Pharmacol. 28, 177–184.Google Scholar
  14. Coutts R. T., Baker G. B., LeGatt D. F., Mcintosh G. J., Hopkinson G., and Dewhurst W. G. (1981) Screening for amines of psychiatric interest in urine using gas chromatography with electron-capture detection. Progr. Neuro-Psychopharmacol. 5, 565–568.CrossRefGoogle Scholar
  15. Cristofoli W. A., Baker G. B., Coutts R. T., and Benderly A. (1982) Analysis of a monofluorinated analogue of amphetamine in brain tissue using gas chromatography with electron-capture detection. Progr. Neuropsycho-Pharmacol. Biol. Psychiat. 6, 373–376.CrossRefGoogle Scholar
  16. Davis B. A. and Boulton A. A. (1981a) Excretion of m-hydroxymandelic acid in human urine. J. Chromatogr. Biomed. Appl. 222, 271–275.CrossRefGoogle Scholar
  17. Davis B. A. and Boulton A. A. (1981b) Longitudinal urinary excretion of some “trace” acids in a human male. J. Chromatogr. Biomed. Appl. 222, 161–169.CrossRefGoogle Scholar
  18. Davis B. A., Durden D. A., Pun-Li P., and Boulton A. A. (1977) Gas chromatographic procedure for the deter-mination of meta- and para-hydroxyphenylacetic acids. J. Chromatogr. 142, 517–522.PubMedCrossRefGoogle Scholar
  19. Deo P. G. and Howard P. H. (1978) Phosphorylation of alcohols/phenols for gas-liquid chromatographic sep-aration and flame photometric detection. J. Offic. Anal. Chem. 61, 210–213.Google Scholar
  20. Doshi P. S. and Edwards D. J. (1979) Use of 2,6-dinitro- 4-trifluoromethylbenzenesulfonic acid as a novel derivatizing reagent for the analysis of catechol-amines, histamines and related amines by gas chroma-tography with electron-capture detection. J. Chromatogr. 176, 359–366.PubMedCrossRefGoogle Scholar
  21. Doshi P. S. and Edwards D. J. (1981) Effects of L-DOPA on dopamine and norepinephrine concentrations in rat brain assessed by gas chromatography. J. Chromatogr. 210, 505–511.PubMedCrossRefGoogle Scholar
  22. Durden D. A., Philips S. R., and Boulton A. A. (1973) Identification and distribution of B-phenylethyl- amine in the rat. Can. J. Biochem. 51, 995–1002.PubMedCrossRefGoogle Scholar
  23. Edwards D. J. and Blau K. (1972) Analysis of phenylethyl- amines in biological tissues by gas-liquid chromato-graphy with electron-capture detection. Anal. Biochem. 45, 387–402.PubMedCrossRefGoogle Scholar
  24. Edwards D. J. and Blau K. (1973) Phenylethylamine in brain and liver of rats with experimentally induced phenylketonuria-like characteristics. Biochem. J. 132, 95–100.PubMedGoogle Scholar
  25. Haeffner L. J., Magen J., and Kowlessar O. D. (1976) The gas-liquid chromatographic separation of selected catecholamines on polyamide A103. J. Chromatogr. 118, 425–428.PubMedCrossRefGoogle Scholar
  26. Jacob K., Falkner C., and Vogt W. (1978) Derivatization method for the high-sensitivity determination of amines and amino acids as dimethylthiophosphinic amides with the alkali flame-ionization detector. J. Chromatogr. 167, 67–75.CrossRefGoogle Scholar
  27. Javaid J. I. and Davis J. M. (1981) GLC analysis of phen- ylalkyl primary amines using nitrogen detector. J. Pharm. Sci. 70, 813–815.PubMedCrossRefGoogle Scholar
  28. Karoum F., Nasrallah H., Potkin S., Chuang L., Moyer-Schwing J., Phillips I., and Wyatt R. J. (1979) Mass fragmentography of phenylethylamine, m- and β-tyra- mine and related amines in plasma, cerebrospinal fluid, urine and brain. J. Neurochem. 33, 201–212.PubMedCrossRefGoogle Scholar
  29. LeGatt D. F., Baker G. B., and Coutts R. T. (1981) Simul-taneous extraction and separation of trace amines of biological interest. J. Chromatogr. Biomed. Appl. 225, 301–308.CrossRefGoogle Scholar
  30. Martin I. L. and Baker G. B. (1977) A gas-liquid chromatographic method for the estimation of 2-phenyl- ethylamine in rat brain tissue. Biochem. Pharmac. 26, 1513–1516.CrossRefGoogle Scholar
  31. McQuade P. L., Juorio A. V., and Boulton A. A. (1981) Estimation of p- and m-isomers of hydroxyphenylacetic acid in mouse brain by a gas chromatographic procedure: their regional distribution and the effects of some drugs. J. Neurochem. 37, 735–739.PubMedCrossRefGoogle Scholar
  32. Midha K. K., McGilveray I. J., and Cooper J. K. (1979) A GLC-ECD assay for simultaneous determination of fen-fluramine and norfenfluramine in human plasma and urine. Can. J. Pharm. Sci. 14, 18–21.Google Scholar
  33. Narasimhachari N. and Friedel R. O. (1981) Quantitation of biologically important primary amines as their isothiocyanate derivatives by gas chromatography using nitrogen detection and validation by selected ion monitoring. Clin. Chim. Acta. 110, 235–243.PubMedCrossRefGoogle Scholar
  34. Oliver J. S., Smith H., and Williams D. J. (1977) The detection, identification and measurement of indole, tryptamine and 2-phenylethylamine in putrefying human tissue. Forensic Sci. 9, 195–203.PubMedCrossRefGoogle Scholar
  35. Oon, M. C. H. and Rodnight R. (1977) A gas chromatographic procedure for determining N,N-dimethyltrypt- amine and N-monomethyltryptamine in urine using a nitrogen detection. Biochem. Med. 18, 410–419.PubMedCrossRefGoogle Scholar
  36. Philips S. R., Durden D. A., and Boulton A. A. (1974a) Identification and distribution of jp-tyramine in the rat. Can. J. Biochem. 52, 336–373.Google Scholar
  37. Philips S. R., Durden D. A., and Boulton A. A. (1974b) Identification and distribution of tryptamine in the rat. Can. J. Biochem. 52, 447–451.PubMedGoogle Scholar
  38. Reynolds G. P. and Gray D. O. (1976) A method for the estimation of 2-phenylethylamine in human urine by gas chromatography. Clin. Cim. Acta 70, 213–217.CrossRefGoogle Scholar
  39. Reynolds G. P. and Gray D. O. (1978) Gas chromatographic detection of N-methyl-2-phenylethylamine: a new component of human urine. J. Chromatogr. Biomed. Appl. 145, 137–140.CrossRefGoogle Scholar
  40. Reynolds G. P., Sandler M., Hardy J., and Bradford H. (1980) The determination and distribution of 2-phen-ylethylamine in sheep brain. J. Neurochem. 34, 1123–1125.PubMedCrossRefGoogle Scholar
  41. Sandler M., Ruthven C. R. J., Goodwin B. L., and Reynolds G. P. (1979) Deficient production of tyramine and octopamine in cases of depression. Nature (Lond.) 278, 357–358.CrossRefGoogle Scholar
  42. Schweitzer J. W., Friedhoff A. J., and Schwartz R. (1975) Phenethylamine in normal urine: failure to verify high values. Biol. Psychiat. 10, 277–285.PubMedGoogle Scholar
  43. Singh J., Cochrane W. P., and Scott J. (1979) Extractive acylation of ethylenethiourea from water. Bull. Environm. Contam. Toxicol. 23, 470–474.Google Scholar
  44. Slingsby J. M. and Boulton A. A. (1976) Separation and quantitation of some urinary arylalkylamines. J. Chromatogr. 123, 51–56.CrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1984

Authors and Affiliations

  • Glen B. Baker
    • 1
  • Ronald T. Coutts
    • 1
  • Ian L. Martin
    • 2
  1. 1.Neurochemical Research Unit, Dept. of Psychiatry and Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmontonCanada
  2. 2.MRC Neurochemical Pharmacology Unit, Medical Research Council CentreThe Medical SchoolCambridgeEngland

Personalised recommendations