Skip to main content

Phenylethylamine, Tyramine and Other Trace Amines in Patients with Affective Disorders: Associations with Clinical State and Antidepressant Drug Treatment

  • Chapter
Neurobiology of the Trace Amines

Abstract

In 22 patients with major affective disorders, phenyl-ethylamine (PE) excretion tended to be higher and more variable in 12 females (25 ± 39 μg/d) than in 10 males (8 ± 1 μg/day). In a subgroup of 15 patients studied intensively as part of a treatment trial with the MA0-inhibitors, clorgyline and pargyline, pretreatment PE excretion was not consistently associated with differences in severity of depression, anxiety, activation or hypomania, although almost all correlations with psychopathology were in the negative direction, including several [self-rated dysphoria (r=-.55), anger (r=-.49), functional deficit (r=-.59)] which were statistically significant. Excretion of m-tyramine (m-TA) also exhibited generally negative associations with psychopathology, including self-rated depression (r=-.52) and anxiety (r=-.59), while hypomania was positively correlated (r=.72). Significant cross-correlations among PE, m-TA, and p-TA were not present at baseline, but MAO-inhibitor treatment led to intercorrelated increases in these trace amines, as well as phenylethanolamine, o-TA and platelet MAO activity changes. Increased PE excretion was associated with significantly decreased self-rated depression and anxiety during MAO-inhibitor treatment. Some baseline cardiovascular measures were negatively correlated with PE excretion, including systolic blood pressure, pulse and plasma norepinephrine concentrations, while baseline p-TA excretion was significantly correlated with pulse increases and systolic and diastolic blood pressure reductions produced by standing. These associations suggest that further study of behavioral connections with PE and m-TA excretion and of cardiovascular interactions with p-TA and PE might be of interest. Our data could be considered consistent with an amended hypothesis relating phenylethylamine to a cluster of depression-related symptoms including dysphoria and anger, but not depressed mood alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldessarini R. J. & Fischer J. E. (1978) Trace amines and alternative neurotransmitters in the central nervous system. Biochem. Pharmcol. 27, 621–626.

    Article  CAS  Google Scholar 

  • Bonham Carter S. M., Reveley M. A., Sandler M., Dewhurst S. J., Little B. C., Hayworth J. & Priest R. G. (1980) Decreased urinary output of conjugated tyramine is associated with lifetime vulnerability to depressive illness. Psychiatry Res. 3, 13–21.

    Article  Google Scholar 

  • Fischer B. & Heller B. (1972) Phenethylamine as a neurohumoral agent in brain. Behav. Neuropsychiat. 4, 8–11.

    CAS  Google Scholar 

  • Fischer E., Spatz H., Saavedra J. M., Reggiani H., Miro A. H. & Heller B. (1972) Urinary elimination of phenethylamine. Biol. Psychiatry 5, 139–147.

    PubMed  CAS  Google Scholar 

  • Jeste D. V., Doongaji D. R., Panjwani D., Datta M., Potkin, S. G., Karoum F., Thatte S., Sheth A. S., Apte J. S. & Wyatt R. J. (1980) Cross-cultural study of a biochemical abnormality in paranoid schizophrenia. Psychiatry Res. 3, 341–352.

    Google Scholar 

  • Jones R. S. G. (1982) Tryptamine: A neuromodulator or neurotransmitter in mammalian brain? Prog. Neurobiol. 19, 117–139.

    Article  PubMed  CAS  Google Scholar 

  • Karoum F., Nasrallah H., Potkin S., Chuang L., Moyer-Schwing J., Phillips I. & Wyatt R. J. (1979) Mass fragmentography of phenylethylamine, m- and p-tyramine and related amines in plasma, cerebrospinal fluid, urine and brain. J. Neurochem. 33, 201–212.

    Article  PubMed  CAS  Google Scholar 

  • Karoum F., Speciale S. G. Jr., Chuang L.-W. & Wyatt R. J. (1982a) Selective effects of phenylethylamine on central catecholamines: A comparative study with amphetamine. J. Pharmacol. Ther. 223, 432–439.

    CAS  Google Scholar 

  • Karoum F., Linniola M., Potter W. Z., Chuang L.-W., goodwin, F. K. & Wyatt R. J. (1982b) Fluctuating high urinary phenylethylamine excretion rates in some bipolar affective disorder patients. Psychiatry Res. 6, 215–222.

    Article  PubMed  CAS  Google Scholar 

  • Lake C. R., Pickar D., Ziegler M. G., Lipper S., Slater S. & Murphy D. L. (1982) High plasma norepinephrine levels in patients with major affective disorder. Am. J. Psychiatry 139, 1315–1318.

    PubMed  CAS  Google Scholar 

  • Lipper S., Murphy D. L., Slater S. & Buchsbaum M. S. (1979) Comparative behavioral effects of clorgyline and pargy- line in man: A preliminary evaluation. Psychopharmacology 62, 123–128.

    Article  PubMed  CAS  Google Scholar 

  • Mosnaim A. D. & Wolf M. E. (1978) Noncatecholic Phenylethylamines - Part 1 - Phenylethylamine: Biological Mechanisms and Clinical Aspects, Marcel Dekker, Inc., New York.

    Google Scholar 

  • Mosnaim A. D. & Wolf M. E. (1980) Noncatecholic Phenylethylamines - Part 2 - Phenylethanolamine, Tyramines, and Octopamine. Marcel Dekker, Inc., New York.

    Google Scholar 

  • Murphy D. L. (1972) Amine precursors, amines and false neurotransmitters in depressed patients. Am. J. Psychiatry 129, 141–148.

    PubMed  CAS  Google Scholar 

  • Murphy D. L., Lipper S., Pickar D., Jimerson D., Cohen R. M., Garrick N. A., Alterman I. S. & Campbell I. C. (1981) Selective inhibition of monoamine oxidase type A: Clinical antidepressant effects and metabolic changes in man, in Monoamine Oxidase Inhibitors. The State of the Art ( Youdim M.B.H. & Paykel E.S., eds.) pp. 189–205. John Wiley & Sons, New York.

    Google Scholar 

  • Murphy D. L., Cohen R. M., Siever L. J., Roy B., Karoum F., Wyatt R. J., Garrick N. A. & Linnoila M. (1983) Clinical and laboratory studies with selective monoamine-oxidase- inhibiting drugs: Implications for hypothesized neurotransmitter changes associated with depression and antidepressant drug effects, in Monoamine Oxidase and Its Selective Inhibitors: New Concepts in Therapy and Research ( Beckmann H. & Riederer P., eds.) pp. 287–303. Basel, Karger.

    Google Scholar 

  • Paulos M. A. & Tessel R. E. (1982) Excretion of β-phenethylamine is elevated in humans after profound stress. Science 215, 1127–1129.

    Article  PubMed  CAS  Google Scholar 

  • Potkin A. G., Karoum F., Chuang L.-W., Cannon-Spoor H. E., Phillips I. & Wyatt R. J. (1979) Phenylethylamine in paranoid chronic schizophrenia. Science 206, 470–471.

    Article  PubMed  CAS  Google Scholar 

  • Roy B. F., Murphy D. L., Lipper S., Siever L. J., Alterman I. S. Jimerson D., Lake C. R. & Cohen R. M. (submitted) Cardiovascular effects of the selective monoamine oxidase- inhibiting antidepressant clorgyline: Correlations with clinical responses and changes in catecholamine metabolism.

    Google Scholar 

  • Sabelli H. C. & Mosnaim A. D. (1974) Phenylethylamine hypothesis of affective behavior. Am. J. Psychiatry 131, 695–699.

    PubMed  CAS  Google Scholar 

  • Sabelli H. C., B0ris0n R. L., Diamond B. I., Havdala H. S. & Narasimhachar N. (1978) β-Phenylethylamine and brain function. Biochem. Pharmacol. 27, 1729–1730.

    Article  Google Scholar 

  • Sandler M., Ruthven C. R., Goodwin R. L. & Coppen A. (1979a) Decreased cerebrospinal fluid concentration of free phenylacetic acid in depressive illness. Clin. Chem. Acta 93, 169–171.

    Article  CAS  Google Scholar 

  • Sandler M., Ruthven C. R. J., Goodwin B. L. & Reynolds G. P. (1979b) Deficient production of tyramine and octopamine in cases of depression. Nature 278, 357–358.

    Article  PubMed  CAS  Google Scholar 

  • Spatz H. & Spatz N. (1978) Urinary and brain phenylethyl- amine levels under normal and pathological conditions, in Noncatecholic Phenylethylamines - Part 1 - Phenylethyl- amine: Biological Mechanisms and Clinical Aspects ( Mosnaim A.D. & Wolf M.E., eds.) pp. 447–474. Marcel Dekker, New York.

    Google Scholar 

  • Van Kammen D. P. & Murphy D. L. (1975) Attenuation of the euphoriant and activating effects of d- and 1-amphetamine by lithium carbonate treatment. Psychopharmacologia 44, 215–224.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 The Humana Press Inc.

About this chapter

Cite this chapter

Murphy, D.L., Karoum, F., Alterman, I., Lipper, S., Wyatt, R.J. (1984). Phenylethylamine, Tyramine and Other Trace Amines in Patients with Affective Disorders: Associations with Clinical State and Antidepressant Drug Treatment. In: Boulton, A.A., Baker, G.B., Dewhurst, W.G., Sandler, M. (eds) Neurobiology of the Trace Amines. Humana Press. https://doi.org/10.1007/978-1-4612-5312-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5312-9_43

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-9781-9

  • Online ISBN: 978-1-4612-5312-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics