Skip to main content

Degradation Kinetics by MAO of PEA Derivatives. A Model for the Molecular Basis of their Analgesic and Behavioral Effects?

  • Chapter
Neurobiology of the Trace Amines

Abstract

The classical endogenous noncatecholic phenylethylamines, phenylethylamine (PEA), phenylethanolamine, p-tyramine and p-octopamine appear to be involved in peripheral and central nervous system synaptic transmission mechanisms (1,2). The physiological and pharmacological actions of PEA appear of particular importance as alterations in the metabolism of this amine has been postulated to contribute to the pathophysiology of a number of neuropsychiatric disorders (3–7), migraine (8,9) and diabetes (10). In order to better understand the molecular basis of PEA actions we have examined the relationship between the chemical structure, the analgesic activity and kinetic parameters of degradation by monoamine oxidase (MAO) of a series of monosubstituted derivatives of PEA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mosnaim A. D. and Wolf M. E. (eds.) (1978) Non-catecholic Phenylethylamines, Part I:Phenylethylamine; Biological Mechanisms and Clinical Aspects. Marcel Dekker, New York.

    Google Scholar 

  2. Mosnaim A. D. and Wolf M. E. (eds.) (1980) Non-catecholic Phenylethylamines, Part 2: Phenylethanolamine, Tyramines and Octopamine. Marcel Dekker, New York.

    Google Scholar 

  3. Mosnaim A. D., Inwang E. E., Sugerman J. H., DeMartini W., and Sabelli H. C. (1973) Ultraviolet spectrophotometric determination of 2-phenylethylamine in biological samples and its possible correlation with depression. Biol. Psychiat. 6, 235–257.

    PubMed  CAS  Google Scholar 

  4. Sabelli H. C. and Mosnaim A. D. (1974) Phenylethylamine hypothesis of affective behavior. Am. J. Psychiat. 131, 695–699.

    PubMed  CAS  Google Scholar 

  5. Sandler M. and Reynolds G. P. (1976) Does phenylethylamine cause schizophrenia? Lancet 1, 70–71.

    Article  PubMed  CAS  Google Scholar 

  6. Karoum F., Linniola M., Potter W. Z., Chuang L.-W., Goodwin F. K., and Wyatt R. J. (1982) Fluctuating high urinary phenylethylamine excretion rates in some bipolar affective disorder patients. Psychiat. Res. 6, 215–222.

    Article  CAS  Google Scholar 

  7. Wolf M. E. and Mosnaim A. D. (1983) Phenylethylamine in neuropsychiatric disorders. Gen. Pharmacol. 14, 385–390.

    Article  PubMed  CAS  Google Scholar 

  8. Diamond S., Dalessio D., Graham J., and Medina J. L. (eds.) (1975) Vasoactive Substances Relevant to Migraine. Charles C. Thomas, New York.

    Google Scholar 

  9. Mosnaim A. D., Wine R., Karoum F., Diamond S. and Wolf M. E. (1982) Methionine enkephalin, phenylethylamine, phenylacetic acid, platelet monoamine oxidase, and prolactin in plasma of migraine patients. Clinical Pharmac. and Therap. 31, 251–252.

    Google Scholar 

  10. Mosnaim A. D., Karoum F., Zeller A., Callaghan O. H., Singh S. P., and Wolf M. E. (1982) Platelet monoamine oxidase activity and plasma levels of non-catecholic phenylethy1amines in insulin-dependent diabetic subjects. Clin. Chim. Acta 126, 237–242.

    Article  PubMed  CAS  Google Scholar 

  11. Zeller E. A., Mosnaim A. D., Borison R. L., and Huprikar S. V. (1976) Phenylethylamine: Studies on the mechanism of its physiological action, in Advances in Biochemical Psychopharmacology, Vol. 15: First and Second Messengers—New Vistas, pp. 75–86. Raven Press, New York.

    Google Scholar 

  12. Kochli H. and von Wartburg J. P. (1978) A sensitive photometric assay for monoamine oxidase. Anal. Biochem. 84, 127–135.

    Article  PubMed  CAS  Google Scholar 

  13. Ehrenpreis S., Balagot R. C., Comaty J. E., and Myles S. B. (1979) Advances in Pain Research and Therapy, Vol. 3, pp. 479–488. Raven Press, New York.

    Google Scholar 

  14. Ungar F., Mosnaim A, D., Ungar B., and Wolf M. E. (1978) Preliminary studies of the sodium borohydride stabilizable binding of phenylethylamine and tyramine to brain preparation. Res. Commun. Chem. Pathol. Pharmacol. 19, 427–434.

    PubMed  CAS  Google Scholar 

  15. Hansen T. R., Greenberg J., and Mosnaim A. D. (1980) Direct effect of phenylethylamine upon isolated rat aortic strip. Eur. J. Pharmacol. 63, 95–101.

    Article  PubMed  CAS  Google Scholar 

  16. Mosnaim A. D., Vazquez A., and Nair V. (1982) First World Congress on Toxicology and Environmental Health, Washington, D. C. (Abst.).

    Google Scholar 

  17. Jackson D. M. and Smythe D. B. (1973) The distribution of β–phenylethylamine in discrete regions of the rat brain and its effect on brain noradrenaline, dopamine and 5-hydroxytryptamine levels. Neuropharmacology 12, 663–668.

    Article  PubMed  CAS  Google Scholar 

  18. Sabelli H. C., Vazquez A. J., Mosnaim A. D., and Madrid-Pedemonte L. (1974) 2-Phenylethylamine as a possible mediator for Δ9-tetrahydrocannabinol-induced stimulation. Nature 248, 144–145.

    Article  PubMed  CAS  Google Scholar 

  19. Borison R. L., Havdala H. S., and Diamond B. I. (1977) Chronic phenylethylamine-induced stereotypy in rats: A new animal model for schizophrenia? Life Sci. 21, 117–122.

    Article  PubMed  CAS  Google Scholar 

  20. Dourish C. T. (1982) A pharmacological analysis of the hyperactivity syndrome induced by 3-phenylethylamine in the mouse. Br. J. Pharmac. 77, 129–139.

    CAS  Google Scholar 

  21. Sloviter R. S., Connor J. D., and Drust E. G. (1980) Serotonergic properties of 3-phenylethylamine in rats. Neuropharmacology 19, 1071–1074.

    Article  PubMed  CAS  Google Scholar 

  22. Goudie A. J. and Buckland C. (1982) Serotonin receptor blockade potentiates the behavioral effects of β-phenylethylamine. Neuropharmacology 21, 1267–1272.

    Article  PubMed  CAS  Google Scholar 

  23. Garzon J., Moratalla R., and Del Rio J. (1980) Potentiation of the analgesia induced in rats by morphine or [D-Ala2]-Metenkephalinamide after inhibition of brain type B monoamine oxidase: The role of phenylethylamine. Neuropharmacology 19, 723–729.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 The Humana Press Inc.

About this chapter

Cite this chapter

Mosnaim, A.D., Wolf, M.E., Zeller, E.A. (1984). Degradation Kinetics by MAO of PEA Derivatives. A Model for the Molecular Basis of their Analgesic and Behavioral Effects?. In: Boulton, A.A., Baker, G.B., Dewhurst, W.G., Sandler, M. (eds) Neurobiology of the Trace Amines. Humana Press. https://doi.org/10.1007/978-1-4612-5312-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5312-9_25

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-9781-9

  • Online ISBN: 978-1-4612-5312-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics