Skip to main content

Neuronal Transport of Trace Amines: An Overview

  • Chapter
Book cover Neurobiology of the Trace Amines

Abstract

Recently, it has been shown that uptake of radiolabeled meta-tyramine (mTA) or para-tyramine (pTA) into slices of rat hypothalamus and striatum was very similar to that of dopamine (DA). The uptake of all three amines could be resolved into a high affinity, as well as a low affinity, uptake system. The high affinity uptakes of mTA and pTA into the striatum were sodium dependent, were decreased by lesioning of the substantia nigra or medial forebrain bundle, and by the presence of cocaine, ouabain or dinitrophenol. In addition, a depolarizing stimulus caused the Ca++-dependent release of radiolabelled, as well as endogenous, mTA and pTA from rat slices. The characteristics of mTA and pTA uptake and release are those that have been associated with a neurotransmitter function; however, it appears that the release of mTA and pTA can originate from a different neuronal compartment than DA release. In keeping with this, it has been observed that two different types of drugs -- the methylphenidate-like CNS stimulants and dipropyl-substituted aminotetralins -- stimulate the release of mTA and pTA but not DA. It seems possible that alterations in the intraneuronal compartmentation of mTA and pTA may affect the quantity of catecholamine release and may also affect the nature of the post-synaptic response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldessarini R.J. and Vogt M. (1971) The uptake and subcellular distribution of aromatic amines in the brain of the rat. J. Neurochem. 18, 2519–2533.

    Article  PubMed  CAS  Google Scholar 

  • Baldessarini R.J. and Vogt M. (1972) Regional release of aromatic amines from tissues of the rat brain in vitro. J. Neurochem. 19, 755–761.

    Article  PubMed  CAS  Google Scholar 

  • Benjamin A.M. and Quastel J.M. (1972) Locations of amino acids in brain slices from the rat. Biochem. J. 128, 631–646.

    PubMed  CAS  Google Scholar 

  • Bianchi L., Stella L., Dagnino G., de Gaetano G. and Rossi G. (1981) The uptake of tyramine by rat platelets. Biochem. Pharmacol. 30, 709–713.

    Article  PubMed  CAS  Google Scholar 

  • Born G.V.R., Juengjaroen K. and Michal F. (1972) Relative activities on and uptake by human blood platelets of 5-hydroxytryptamine and several analogues. Br. J. Pharmacol. 44, 117–139.

    PubMed  CAS  Google Scholar 

  • Boulton A.A. (1979) Trace amines in the central nervous system, in, Int. Rev. Biochem., Physiol. Pharmacol. Biochem., Vol. 26 (Tipton K.F., ed) pp 179–206. University Park Press, New York.

    Google Scholar 

  • Boulton A.A. and Juorio A.V. (1982) Brain trace amines, in, Handbook of Neurochemistry, Vol. 1 (Lajtha A., ed) pp 189–222. Plenum Publishing, New York.

    Google Scholar 

  • Boulton A.A. and Juorio A.V. (1983) Cerebral decarboxylation of meta- and para-tyrosine. Experientia 39, 130–134.

    Article  PubMed  CAS  Google Scholar 

  • Braestrup C. (1977) Biochemical differentiation of amphetamine vs methylphenidate and nomifensine in rats. Eur. J. Pharmacol. 29, 463–470.

    CAS  Google Scholar 

  • Commarato M.A., Brody T.M. and McNeill J.H. (1969) The effect of various drugs on the uptake and metabolism of tyramine-H3 in the rat heart. J. Pharmacol. Exp. Ther. 167, 151–158.

    PubMed  CAS  Google Scholar 

  • Costa J.L., Murphy D.L. and Reveille J. (1977) Evaluation of the uptake of various amines into storage vesicles of intact human platelets. Br. J. Pharmacol. 61, 223–228.

    PubMed  CAS  Google Scholar 

  • Davis A.J., Roberts P.J. and Woodruff G.N. (1978) The uptake and release of [3H]-2-amino-6,7-dihydroxy-l,2,3,4- tetrahydronaphthalene (ADTN) by striatal nerve terminals. Br. J. Pharmacol. 63, 183–190.

    PubMed  CAS  Google Scholar 

  • DeBelleroche J.S. and Bradford H. (1977) On the site of origin of transmitter amino acids released by depolarization of nerve terminals in vitro. J. Neurochem. 29, 335–343.

    Article  CAS  Google Scholar 

  • De La Lande I.S. and Waterson J.G. (1968) The action of tyramine on the rabbit ear artery. Br. J. Pharmacol. 34, 8–18.

    PubMed  Google Scholar 

  • Dembiec D. (1980) Inhibition of potassium-stimulated release of [3H]-dopamine from rat striata as a result of prior exposure to cocaine, nomifensine or mazindol. Neurochem. Res. 5, 345–349.

    Article  PubMed  CAS  Google Scholar 

  • Dyck L.E. (1978) Uptake and release of meta-tyramine, para-tyramine and dopamine in rat striatal slices. Neurochem. Res. 3, 775–791.

    Article  PubMed  CAS  Google Scholar 

  • Dyck L.E. (1981) Methylphenidate-like stimulants in vitro release [3H]-tyramines but not [14C]-dopamine. Eur. J. Pharmacol. 69, 371–374.

    Article  PubMed  CAS  Google Scholar 

  • Dyck L.E. (1984) The uptake and release of 14C tryptamine by rat brain slices, in Neurobiology of the Trace Amines, Boulton A.A., Baker G.B, Dewhurst W.G. and Sandler M. (eds), Humana Press Inc., New Jersey.

    Google Scholar 

  • Dyck L.E. and Boulton A.A. (1980) The effect of reserpine and various monoamine oxidase inhibitors on the uptake and release of tritiated meta-tyramine, para-tyramine and dopamine in rat striatal slices. Res. Commun. Psychol. Psychiat. Behav. 5, 61–78.

    CAS  Google Scholar 

  • Dyck L.E., Juorio A.V. and Boulton A.A. (1982) The in vitro release of endogenous m-tyramine, p-tyramine and dopamine from rat striatum. Neurochem. Res. 7, 705–716.

    Article  PubMed  CAS  Google Scholar 

  • Dyck L.E., Juorio A.V. and Boulton A.A. (1982) The in vitro release of endogenous m-tyramine, p-tyramine and dopamine from rat striatum. Neurochem. Res. 7, 705–716.

    Article  PubMed  CAS  Google Scholar 

  • Farmer J.B. (1966) The biphasic response of an isolated artery to tyramine. Br. J. Pharmacol. Chemother. 28, 340–347.

    PubMed  CAS  Google Scholar 

  • Greenberg R. and Whalley C.E. (1978) Studies on the uptake of phenylethylamine into the secretory vesicles of brain synaptosomes, in, Noncatecholic Phenylethylamines, Part 1. Phenylethylamine: Biological Mechanisms and Clinical Aspects (Mosnaim A.D. and Wolf M.E., eds) pp. 87–112. Marcel Dekker, New York.

    Google Scholar 

  • Héry F., Simmonet G., Bourgoin S., Soubrie P., Artaud F., Hamon M. and Glowinski J. (1979) Effect of nerve activity on the in vivo release of [3H]-serotonin continuously formed from L-[3H]-tryptophan in the caudate nucleus of the cat. Brain Res. 169, 317–334.

    Article  PubMed  Google Scholar 

  • Héry M., Faudon M. and H£ry F. (1983) In vitro release of newly synthesized serotonin from superfused rat suprachiasmatic area — ionic dependency. Eur. J. Pharmacol. 89, 9–18.

    Article  PubMed  Google Scholar 

  • Hicks T.P. (1977) The possible role of octopamine as a synaptic transmitter: a review. Can. J. Physiol. Pharmacol. 55, 137–152.

    Article  PubMed  CAS  Google Scholar 

  • Hyttel J. (1978) Inhibition of [H]-dopamine accumulation in rat striatal synaptosomes by psychotropic drugs. Biochem. Pharmacol. 27, 1063–1068.

    Article  PubMed  CAS  Google Scholar 

  • Johnson R.G., Carty S.E., Hayflick S. and Scarpa A. (1982) Mechanisms of accumulation of tyramine, metaraminol and isoproterenol in isolated chromaffin granules and ghosts. Biochem. Pharmacol. 31, 815–823.

    Article  PubMed  CAS  Google Scholar 

  • Jones R.S.G. (1984) Electrophysiological studies with trace amines, in Neurobiology of the Trace Amines, Boulton A.A., Baker G.B., Dewhurst W.G. and Sandler M. (eds), Humana Press Inc., New Jersey.

    Google Scholar 

  • Juorio A.V. (1984) The functional implications of some physiological and pharmacological interactions of brain trace amines, in Neurobiology of the Trace Amines, Boulton A.A., Baker G.B., Dewhurst W.G. and Sandler M. (eds), Humana Press Inc., New Jersey.

    Google Scholar 

  • Juorio A.V. (1979) Drug-induced changes in the formation, storage and metabolism of tyramine in the mouse. Br. J. Pharmacol. 66, 377–384.

    PubMed  CAS  Google Scholar 

  • Juorio A.V. and Jones R.S.G. (1982) The effect of mesen-cephalic lesions on tyramine and dopamine in the caudate nucleus of the rat. J. Neurochem. 36, 1898661903.

    Google Scholar 

  • Kopin I.J., Fischer J.E., Mussachio J.M., Horst W.D. and Weise, V.K. (1965). False neurochemical transmitters and the mechanism of sympathetic blockade by monoamine oxidase inhibitors. J. Pharmacol. Exp. Therap. 147, 186–193.

    CAS  Google Scholar 

  • Lentzen H. and Phillipu A. (1977) Uptake of tyramine into synaptic vesicles of the caudate nucleus. N.S. Arch. Pharmacol. 300, 25–30.

    Article  CAS  Google Scholar 

  • Lentzen H. and Phillipu A. (1981) Physico-chemical proper-ties of phenethylamines and their uptake into synaptic vesicles of the caudate nucleus. Biochem. Pharmacol. 30, 1759–1764.

    Article  PubMed  CAS  Google Scholar 

  • Luduena F.P. (1963) Effect of reserpine on the vasacon- strictor action of tyramine on the rabbit ear, with a discussion of the mechanisms of action of reserpine and tyramine. Acta Physiol. Lat.-Amer. 13, 221–241.

    PubMed  CAS  Google Scholar 

  • Marin J., Salaices M. and Sanchez C.F. (1982) Analysis of the effects of noradrenaline and tyramine in isolated middle cerebral and femoral arteries of cat. Gen. Pharmacol. 13, 125–132.

    Article  PubMed  CAS  Google Scholar 

  • Marin J., Salaices M. and Sanchez C.F., Conde M.V., Gomez B. and Lluch S. (1981) Vasoconstrictor effects of tyramine and noradrenaline on goat brain vessels. Gen. Pharmacol. 12, 187–191.

    CAS  Google Scholar 

  • Mulder A.H., Braakhuis B., DeRegt V., Dijkstra D. and Horn A.S. (1980) Effects of ADTN and various 2-aminotetralin derivatives on the efflux of 3H-dopamine from rat striatal slices. Eur. J. Pharmacol. 64, 349–355.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson S. and Holmgren S. (1976) Uptake and release of catecholamines in sympathetic nerve fibres in the spleen of the cod, Gadus morhua. Eur. J. Pharmacol. 39, 41–51.

    Article  PubMed  CAS  Google Scholar 

  • Osborne N.N. (1980) Specificity of serotonin uptake by bovine retina: comparison with tryptamine. Exp. Eye Res. 31, 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Petrali E.H. (1977) The uptake and release of some monoa-mines in the rat brain. Ph.D. Thesis, University of Saskatchewan.

    Google Scholar 

  • Petrali E.H. (1980) Differential effects of benztropine and desipramine on the high affinity uptake of para-tyramine in slices of the caudate nucleus and hypothalamus.

    Google Scholar 

  • Petrali E.H., Boulton A.A. and Dyck L.E. (1979) Uptake of para-tyramine and meta-tyramine into slices of the caudate nucleus and hypothalamus of the rat. Neurochem. Res. 4, 633–642.

    Article  PubMed  CAS  Google Scholar 

  • Pletscher A. (1976) Transport of monoamines in membranes of adrenal chromaffin granules: physiological and pharma-cological aspects. Bull. Schweiz. Akad. Med. Wiss. 32, 181–190.

    PubMed  CAS  Google Scholar 

  • Ross S.B. (1977) On the mode of action of central stimula-tory agents. Acta Pharmacol. Toxicol. 41, 392–396.

    Article  CAS  Google Scholar 

  • Ross S.B. and Ask A.-L. (1980) Structural requirements for uptake into serotoninergic neurones. Acta Pharmacol. Toxicol. 46, 270–277.

    Article  CAS  Google Scholar 

  • Ross S.B. and Renyi A.L. (1971) Uptake and metabolism of g-phenylethylamine and tyramine in mouse brain and heart slices. J. Pharm. Pharmac. 23, 276–279.

    Article  CAS  Google Scholar 

  • Ross S.B., Renyi A.L. and Brunfelter B. (1968) Cocaine- sensitive uptake of sympathomimetic amines in nerve tissue. J. Pharm. Pharmac. 20, 283–288.

    Article  CAS  Google Scholar 

  • Saldate M.C. and Orrego F. (1977) Differences in the electrically induced release of 3H-labeled β-phenylethylamine, tyramine, octopmaine and norepinephrine from rat neocortical slices, in, Noncatecholic Phenylethylamines, Part 1. Phenylethylamine: Biological Mecvanisms and Clnical Aspects. (Mosnaim A.D. and Wolf M.E., eds), pp 159 - 177. Marcel Dekker, New York.

    Google Scholar 

  • Schroder H.M., Neuhoff V., Priggemeier E. and Osborne N.N. (1979) The influx of tryptamine into snail (Helix pomatia) ganglia: comparison with 5-hydroxytryptamine. Malacologia 18, 517–525.

    PubMed  CAS  Google Scholar 

  • Shore P.A. (1976) Actions of amfonelic acid and other non-amphetamine stimulants on the dopamine neuron. J. Pharm. Pharmac. 28, 855–857.

    Article  CAS  Google Scholar 

  • Snodgrass S.R. and Iversen L.L. (1974) Formation and release of 3H-tryptamine from H-tryptophan in rat spinal cord slices. Adv. Biochem. Psychopharamcol. 10, 141–150.

    CAS  Google Scholar 

  • Stacey R.S. (1961) Uptake of 5-hydroxytryptamine byplatelets. Br. J. Pharmacol. 16, 284–295.

    CAS  Google Scholar 

  • Stoof J.C., Liem A.L. and Mulder A.M. (1976) Release and receptor stimulating properties of p-tyramine in rat brain. Arch. Int. Phrmacodyn 220, 62–71.

    CAS  Google Scholar 

  • Thoa N.B., Wooten G.F., Axelrod J. and Kopin I.J. (1975) On the mechanism of release of norepinephrine from sympathetic nerves induced by depolarizing agents and sympathomimetic drugs. Mol. Pharmacol. 11, 10–18.

    PubMed  CAS  Google Scholar 

  • Toda N., Hayashi S. and Hattori K. (1978) Analysis of the effect of tyramine and norepinephrine in isolated canine cerebral and mesenteric arteries. J. Pharmacol. Exp. Ther. 205, 382–391.

    PubMed  CAS  Google Scholar 

  • Urquilla P.R., Marco E.J., Balfagan G. and Lluch S. (1974) Adrenergic mechanisms in cerebral blood vessels: effect of tyramine on the isolated middle cerebral artery of the goat. Stroke 5, 447–452.

    Article  PubMed  CAS  Google Scholar 

  • Wu P.H., Baker G.B. and Henwood R.W. (1980) Tyramine as a neurotransmitter: pros and cons, in Noncatecholic Phenylethylamines, Part 2, Phenylethanolamine, tyramines and octopamine. (Mosnaim A.D. and Wolf M.E., eds), pp. 307–339,

    Google Scholar 

  • Wu P.H., and Boulton A.A. (1973) Distribution and metabolism of tryptamine in rat brain. Can. J. Biochem. 51, 1104–1112.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 The Humana Press Inc.

About this chapter

Cite this chapter

Dyck, L.E. (1984). Neuronal Transport of Trace Amines: An Overview. In: Boulton, A.A., Baker, G.B., Dewhurst, W.G., Sandler, M. (eds) Neurobiology of the Trace Amines. Humana Press. https://doi.org/10.1007/978-1-4612-5312-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5312-9_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-9781-9

  • Online ISBN: 978-1-4612-5312-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics