Advertisement

Biosynthesis of Peptides in Honeybee Venom Glands and Frog Skin: Structure and Multi-Step Activation of Precursors

  • Odd Nygård
  • Peter Westermann

Abstract

The biosynthesis of peptides invariably proceeds via pre-pro-forms, which are cleaved and modified by a series of enzymatic reactions to ultimately yield the final product. The concept of limited proteolysis, originally developed for the conversion of zymogens to the active enzymes, has amply been documented in studies on the liberation of peptides from their respective precursors. One type of posttranslational reaction, the cleavage at pairs of lysine/arginine residues, as was first detected for proinsulin (1), has frequently been observed in precursor-product conversions. In the past years, the occurrence of other processing reactions has been documented which show apparently a more restricted distribution. In our laboratory, the biosynthesis of peptides in honeybee venom glands and, more recently, in amphibian skin has been investigated and the types of translational and post-translational reactions involved in the liberation of these peptides from larger precursors are described in this communication.

Keywords

Frog Skin Venom Gland Signal Peptidase Skin Secretion Amphibian Skin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Docherty, K., and Steiner, D.F., Ann. Rev. Physiol. 44, 625–638 (1982).CrossRefGoogle Scholar
  2. 2.
    Habermann, E., Science 77, 314–318 (1972).CrossRefGoogle Scholar
  3. 3.
    Suchanek, G., Kreil, G., Hermodson, M.A., Proc.Natl. Acad.Sci. USA 75, 701–704 (1978).PubMedCrossRefGoogle Scholar
  4. 4.
    Vlasak, R., Unger-Ullmann, C., Kreil, G., and Frischauf, A.M., Eur. J. Biochem. submitted (1983).Google Scholar
  5. 5.
    Walter, P., Ibrahim, I., and Blobel, G., J. Cell Biol. 91,545–550 (1981).Google Scholar
  6. 6.
    Meyer, D.I., Krause, E., and Dobberstein, B., Nature 297, 647–650 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    Blobel, G., Dobberstein, B., J. Cell Biol. 67, 835–851 (1975).PubMedCrossRefGoogle Scholar
  8. 8.
    Kreil, G., Ann. Review Biochem. 50, 317–348 (1981).CrossRefGoogle Scholar
  9. 9.
    Lane,C.D., Champion, J., Haiml, L., Kreil, G., Eur. J. Biochem. 113, 273–281 (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    Kreil, G., Suchanek, G., Kaschnitz, R., Kin- das-Mügge, I., FEBS Symp. 47, 79–88 (1978).Google Scholar
  11. 11.
    Jackson, R.C., Blobel, G., Proc. Natl. Acad. Sci. USA 74, 5598–5602 (1977).PubMedCrossRefGoogle Scholar
  12. 12.
    Kaschnitz, R., Kreil, G., Biochem. Biophys. Res. Commun. 83, 901–907 (1978).PubMedCrossRefGoogle Scholar
  13. 13.
    Strauss, A.M., Zimmermann, M., Boime, I., Ashe, B., Mumfora, R.A., Alberts, A.W., Proc. Natl. Acad. Sci. USA 76, 4225–4229 (1979).PubMedCrossRefGoogle Scholar
  14. 14.
    Thibodeau, S.N., Walsh, K.A., Ann. N.Y. Acad. Sci. 343, 180–191 (1980).PubMedCrossRefGoogle Scholar
  15. 15.
    Jackson, R.C., Blobel, G., Ann. N.Y. Acad. Sci. 343, 391–404 (1980).PubMedCrossRefGoogle Scholar
  16. 16.
    Jackson, R.C., White, W.R., J. Biol. Chem. 256, 2545–2550 (1981).PubMedGoogle Scholar
  17. 17.
    Mollay, C., Vilas, U., Kreil, G., Proc. Natl Acad. Sci. USA 79, 2260–2263 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    Mollay, C. and Vilas, U., unpublished experiments (1982)Google Scholar
  19. 19.
    Mollay, C., Vilas, U. and Wickner, W., unpublished experiments (1983).Google Scholar
  20. 20.
    Amara, S.G., David, D.N., Rosenfeld, M.G., Ross, B.A., and Evans, R.M., Proc. Natl. Acad. Sci. USA 77, 4444–4448 (1980).PubMedCrossRefGoogle Scholar
  21. 21.
    Yoo, O.J., Powell, C.T., and Agarwal, K.L., Proc. Natl. Acad. Sci. USA 79, 1049–1053 (1982)PubMedCrossRefGoogle Scholar
  22. 22.
    Land, H., Schütz, G., Schmale, H., and Richter, D., Nature 295, 299–303 (1982).PubMedCrossRefGoogle Scholar
  23. 23.
    Land, H., Grez, M., Ruppert, S., Schmale, H., Rehbein, M., Richter, D., and Schütz, G., Nature 302, 342–344 (1983).PubMedCrossRefGoogle Scholar
  24. 24.
    Hoffmann, W., Bach, T.C., Seliger, H. and Kreil, G., EMBO J. 2, 111–114 (1983).PubMedGoogle Scholar
  25. 25.
    Furutani, Y., Morimoto, Y., Shibahara, S., Nöda, M., Takahashi, T., Hirose, T., Asai, M., Inayama, S., Hayashida, H., Miyata, T., and Numa, S., Nature 302, 537–540 (1983).CrossRefGoogle Scholar
  26. 26.
    Bradbury, A.F., Finnie, M.D.A., and Smyth, D.G., Nature 298, 686–688 (1982).PubMedCrossRefGoogle Scholar
  27. 27.
    Kreil, G., Mollav, Ch., Kaschnitz, R., Haiml, L., Vilas, U., Ann. N.Y. Acad. Sci. 343, 338–346 (1980).PubMedCrossRefGoogle Scholar
  28. 28.
    Kreil, G., Haiml, L., Suchanek, G., Eur. J. Biochem. 111, 49–58 (1980).PubMedCrossRefGoogle Scholar
  29. 29.
    Hopsu-Havu, V.X., Ekfors, T.O., Histochemie 17, 30–38 (1969).PubMedCrossRefGoogle Scholar
  30. 30.
    David, R., MacNair, C., Kenny, A.J., Biochem. J. 179, 379–395 (1979).Google Scholar
  31. 31.
    McDonald, J.K., Schwabe, C. In, “Proteinases in Mammalian Cells and Tissues”(Barrett, Ed.) Elsevier/North Holland Biomedical Press, 1977, p. 311–391.Google Scholar
  32. 32.
    Kurjan, J., and Herskowitz, I., Cell 30, 933– 943 (1982).Google Scholar
  33. 33.
    Julius, D., Blair, L., Brake, A., Sprague, G., and Thorner, J., Cell 32, 839–852 (1983).PubMedCrossRefGoogle Scholar
  34. 34.
    Davies, P.L., Roach, A.H., Hew, C.L.: Proc. Natl Acad. Sci. USA 79, 335–339 (1982).PubMedCrossRefGoogle Scholar
  35. 35.
    Gauldie, J., Hanson, J.M., Rumjanek, F.D., Shipolini, R.A., and Vernon, C.A., Eur. J. Biochem. 61, 369–376 (1976).PubMedCrossRefGoogle Scholar
  36. 36.
    Gauldie, J., Hanson, J.M., Shipolini, R.A., and Vernon, C.A., Eur. J. Biochem. 83, 405–410 (1978).PubMedCrossRefGoogle Scholar
  37. 37.
    Kudelin, A.B., Martynov, V.L., Kudelina, I.A., and Miroshnikov, A.I., Abstr. 15th Europ. Pep-tide Symp., Gdansk (1978) p. 84.Google Scholar
  38. 38.
    Schwartz, T.W., and Taqer, H.S., Nature 294, 589–591 (1981).PubMedCrossRefGoogle Scholar
  39. 39.
    Scheller, N.G., Jackson, J.F., McAllister L.B., Rothman, B.S., Mayeri, E., and Axel, R., Cell 22, 7–22 (1983).CrossRefGoogle Scholar
  40. 40.
    Land, H., Schütz, G., Schmale, H., and Richter, D., Nature 295, 299–303 (1982).PubMedCrossRefGoogle Scholar
  41. 41.
    Erspamer, V., and Melchiorri, P., Trends in Pharmacol. Sci. 1980, p. 391–395.Google Scholar
  42. 42.
    Anastasi, A., Erspamer, V., and Enaean, P.., Arch. Biochem. Biophvs. 125, 57–68 (1968).Google Scholar
  43. 43.
    Rehfeld, J.F., Americ. J. Physiol. 240, G255–G266 (1981).Google Scholar
  44. 44.
    Anastasi, A., Bertaccini, G., Cei, J.M., De Caro, G., Erspamer, V., Impicciatore, M. and Roseghini, M., Brit. J. Pharmacol. 38, 221–228 (1970).Google Scholar
  45. 45.
    Vieira, J., and Messing, J., Gene 19, 259–268 (1982).PubMedCrossRefGoogle Scholar
  46. 46.
    Young, R.W., J. Cell Biol. 57, 175–189 (1973).PubMedCrossRefGoogle Scholar
  47. 47.
    Huttner, W.B., Nature 299, 273–275 (1982).PubMedCrossRefGoogle Scholar
  48. 48.
    Hoffmann, W., Richter, K., and Kreil, G., EMB0 J. 2, 71 1–714 (1983).Google Scholar
  49. 49.
    Tatemoto, K., and Mutt, V., Nature 285, 417– 418 (1980).Google Scholar
  50. 50.
    DeGrado, W.F., Krzdy, F.J., and Kaiser, E.T. J.Amer.Chem.Soc. 103, 679–681 (1981).Google Scholar
  51. 51.
    Freer, J.H., and Birkbeck, T.H., J. Theor. Biol. 94, 535–540 (1982).PubMedCrossRefGoogle Scholar
  52. 52.
    Merrifield, R.B., Vitioli, L.D., and Boman, H.G., Biochemistry 21, 5020–5031 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© The Human Press Inc. 1983

Authors and Affiliations

  • Odd Nygård
    • 1
  • Peter Westermann
    • 2
  1. 1.The Wenner-Gren InstituteUniversity of StockholmStockholmSweden
  2. 2.Central Institute of Molecular BiologyAcademy of Sciences of GDRBerlin-BuchGermany

Personalised recommendations