Differential Gene Expression by Messenger RNA Competition

  • Odd Nygård
  • Peter Westermann


Eukaryotic initiation factor 2 (eIF-2) has a dual function in initiation of protein synthesis: it binds Met-tRNAf to the small ribosomal subunit, and it binds directly to mRNA. The binding of eIF-2 to mRNA is highly specific and occurs in satellite tobacco necrosis virus RNA and Mengovirus RNA at the nucleotide sequences that constitute the ribosome binding sites. These findings support the concept that, during translation, eIF-2 may guide the ribosome to this site. Cl or OAc ions inhibit the direct binding of globin mRNA to eIP-2 in a manner that closely resembles their inhibitory effect on the translation of globin mRNA, an inhibition that is relieved by excess eIF-2. Hence,these anions may act to inhibit the interaction between mRNA and eIF-2 during protein synthesis. In mRNA-dependent reticulocyte lysates, a molecule of Mengovirus RNA competes in translation 35-fold more strongly than (on average) a molecule of globin mRNA. This competition is relieved by excess eIF-2. Mengovirus RNA binds directly to eIF-2 with 30-fold higher affinity than does globin mRNA. These results reveal a direct correlation between the affinity of a given mRNA species for eIF-2 and its ability to compete in translation. Indeed, the translational competition between α- and β-globin mRNA is also relieved by excess eIF-2, and in direct binding analysis, β-globin mRNA exhibits greater affinity for eIF-2 than does α-globin mRNA.


Methyl Orange Differential Gene Expression Ribosomal Subunit Ribosome Binding Site mRNA Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barrieux, A. & Rosenfeld, M.G. (1977). J. Biol. Chem. 252, 3843–3847.PubMedGoogle Scholar
  2. Barrieux, A. & Rosenfeld, M.G. (1978). J. Biol. Chem. 253, 6311–6315.PubMedGoogle Scholar
  3. Browning, K.S., Leung, D.W. & Clark, J.M., Jr. (1980). Biochemistry 19, 2276–2282.PubMedCrossRefGoogle Scholar
  4. Clemens, M.J., Safer, B., Merrick, W.C., Anderson, W.F. & London, I.M. (1975). Proc. Natl. Acad. Sci. USA 72, 1286–1290.PubMedCrossRefGoogle Scholar
  5. Darnbrough, C.H., Legon, S., Hunt, T. & Jackson, R.J. (1973). J. Mol. Biol. 76, 379–403.PubMedCrossRefGoogle Scholar
  6. Di Segni, G., Rosen, H. & Kaempfer, R. (1979). Biochemistry 18, 2847–2854.PubMedCrossRefGoogle Scholar
  7. Grifo, J.A., Tahara, S.M., Leis, J.P., Morgan, M.A. Shatkin, A.J. & Merrick, W.C. (1982). J. Biol. Chem. 257, 5246–5252.PubMedGoogle Scholar
  8. Hackett, P.B., Egberts, E. & Traub, P. (1978a). Eur. J. Biochem. 83, 341–352.PubMedCrossRefGoogle Scholar
  9. Hackett, P.B., Egberts, E. & Traub, P. (1978b).Eur. J. Biochem. 83, 353–361.PubMedCrossRefGoogle Scholar
  10. Kaempfer, R. (1974). Biochem. Biophys. Res. Commun. 61, 591–597.CrossRefGoogle Scholar
  11. Kaempfer, R., Hoilender, R., Abrams, W.R. & Israeli R. (1978a). Proc. Natl. Acad. Sci. USA 75, 209–213.PubMedCrossRefGoogle Scholar
  12. Kaempfer, R., Rollender, R., Soreq, H. & Nudel, U. (1979a). Eur. J. Biochem. 94., 591–600.CrossRefGoogle Scholar
  13. Kaempfer, R., Israeli, R., Rosen, H., Knoller, S., Zilber-Stein, A., Schmidt, A. & Revel, M. (1979b).Virology 99, 170–173.PubMedCrossRefGoogle Scholar
  14. Kaempfer, R. & Konijn, A.M. (1983).Eur. J. Biochem.131, 545–550.PubMedCrossRefGoogle Scholar
  15. Kaempfer, R., Rosen, H., Di Segni, G. & Knoller, S. (1983). InMechanisms of Viral Pathogenesis (Kohn, A., ed.) Martinus Nijhoff, The Hague, in pressGoogle Scholar
  16. Kaempfer, R., Rosen, H. & Israeli, R. (1978b).Proc. Natl. Acad. Sci. USA.75 650–654.Google Scholar
  17. Kaempfer, R., van Emroelo, J. & Fiers, W. (1981). Proc. Natl. Acad. Sci. USA 78, 1542–1546.PubMedCrossRefGoogle Scholar
  18. Lawrence, C. & Thach, R. (1974). J. Virol. 14, 598–610.PubMedGoogle Scholar
  19. Lee, K.A.W., Guertin, D. S Sonenberg, N. (1983). J. Biol. Chem. 258, 707–710.PubMedGoogle Scholar
  20. Leung, D.W., Browning, K.S., Heckmann, J.E., RajBhandary, U. L. & Clark, J.M. Jr. (1979). Biochemistry 18, 1361–1366.PubMedCrossRefGoogle Scholar
  21. Levin, D.H., Kyner, D. & Acs, G. (1973). Proc. Natl. Acad. Sci. USA 70, 41–45.PubMedCrossRefGoogle Scholar
  22. Lodish, H.F. (1971). J. Biol. Chem. 246, 7131–7138.Google Scholar
  23. Lodish, H.F. (1974). Nature (London) 251, 385–388.CrossRefGoogle Scholar
  24. Pelham, H.R.B. & Jackson, R.J. (1976). Eur. J. Blochem. 67, 247–256.CrossRefGoogle Scholar
  25. Perez-Bercoff, R. & Kaempfer, R. (1982). J. Virol. 41, 30–41.PubMedGoogle Scholar
  26. Ray, B.K., Brendler, T.G., Adya, S., Daniels-McQueen, S., Miller, J.K., Hershey, J.W.B., Grifo, J.A., Merrick, W.C. & Thach, R.E. (1983). Proc. Natl. Acad. Sci. USA 80, 663–667.PubMedCrossRefGoogle Scholar
  27. Rosen, H., Di Segni, G. & Kaempfer, R. (1982). J. Biol. Chem. 257, 946–952.PubMedGoogle Scholar
  28. Rosen, 11. & Kaempfer, R. (1979). Biochem. Biophys Res. Commun. 91, 449–455.Google Scholar
  29. Rosen, H., Knoller, S. & Kaempfer, R. (1981). Biochemistry 20, 3011–3020.PubMedCrossRefGoogle Scholar
  30. Schreier, M.H. & Staehelin, T. (1973). Nature ( London ), New Biol. 242, 35–38.Google Scholar
  31. Sonenberg, N. (1981). Nuclelc Acids Res. 9 1643–1656.CrossRefGoogle Scholar
  32. Trachsel, H., Erni, B., Schreier, M.H. & Staehelin, T. (1977). J. Mol. Biol. 116, 755–767.PubMedCrossRefGoogle Scholar
  33. Weber, L.A., Hickey, E.D., Maroney, P.A. & Baglioni, C. (1977). J. Biol. Chem. 252, 4007–4010.PubMedGoogle Scholar

Copyright information

© The Human Press Inc. 1983

Authors and Affiliations

  • Odd Nygård
    • 1
  • Peter Westermann
    • 2
  1. 1.The Wenner-Gren InstituteUniversity of StockholmStockholmSweden
  2. 2.Central Institute of Molecular BiologyAcademy of Sciences of GDRBerlin-BuchGermany

Personalised recommendations