Advertisement

Post-Translational Modification of RNA Polymerase I by Protein Kinase NII and Some Novel Immunological Aspects of the Two Enzymes

  • Odd Nygård
  • Peter Westermann
Chapter
  • 62 Downloads

Abstract

Protein kinase NII from a rat tumor, Morris hepatoma 3924A, was purified essentially to homogeneity. It had a molecular weight of 110,000 and consisted of two subunits of molecular weights 42,000 and 25.000. A protein kinase with characteristics similar to protein kinase Nil was associated with RNA polymerase I purified to homogeneity from the hepatoma. Based on several physiochemical criteria, the 42 and 25 kilodalton polypeptides of RNA polymerase I appear to correspond to the protein kinase Nil. These two subunits were present in stoichiometric amounts in RNA polymerase I from the tumor and its proportion in the enzyme molecule was related to the RNA polymerase I activity. The protein kinase autophosphorylated its 25 kilodalton polypeptide as well as the 120, 65, 25 and 19.5 kilodalton polypeptides of RNA polymerase I. Polyamines, at physiological concentrations, augmented the phosphorylation reaction several fold, which resulted from phosphorylation at additional sites in the enzyme molecule. Phosphorylation of RNA polymerase I resulted in its activation and prevented premature termination of RNA chains.

Keywords

Systemic Lupus Erythematosus Systemic Lupus Erythematosus Patient Mixed Connective Tissue Disease Rheumatic Autoimmune Disease Morris Hepatoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, K.A., and Jacob, S.T. (1978). Proc. Natl. Acad. Sci. U.S., 75, 2085–2087.CrossRefGoogle Scholar
  2. Bernstein, R.M., Steigerwald, J.C., and Tan, E.M. (1982). Clin. Exp. Immunol., 48, 43–51.PubMedGoogle Scholar
  3. Burgess, R.R. (1976), in RNA polymerase (Losick, R., and Chamberlin, M., eds) Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 69–100.Google Scholar
  4. Busch, H., Reddy, R., Rothblura, L. and Chor, Y.C. (1982). Ann. Rev. Biochem., 51, 617–?PubMedCrossRefGoogle Scholar
  5. Byrnes, J.J., Downey, K.M., Black, V.L., and So, A.G. (1976). Biochemistry, 15, 2817–2823.PubMedCrossRefGoogle Scholar
  6. Cox, R.F. (1976). Cell, 7, 455–465.PubMedCrossRefGoogle Scholar
  7. Dahmus, M.E. (1981a). J. Biol. Chem., 256, 3319–3325.PubMedGoogle Scholar
  8. Dahmus, M.E. (1981b). J. Biol. Chem., 256, 11239–11243.PubMedGoogle Scholar
  9. Desjardins, P.R., Lue, P.F., Liew, C.C., and Gornall, A.G. (1972). Can. J. Biochem. 50, 1249–1259.PubMedGoogle Scholar
  10. Duceman, B.W., and Jacob, S.T. (1980). Biochem. J. 190, 781–789.PubMedGoogle Scholar
  11. Duceman, B.W., Rose, K.M., and Jacob, S.T. (1981). J. Biol. Chem. 256, 10755–10758.PubMedGoogle Scholar
  12. Gefter, M. (1975). Ann. Rev. Biochem., 44, 45–78.PubMedCrossRefGoogle Scholar
  13. Harrison, J.J., and Jungraann, R.A. (1982). Biochem. Biophys. Res. Commun., 108, 1204–1209.PubMedCrossRefGoogle Scholar
  14. Hasuma, T., Yukioka, M., Nakajima, S. Morisawa, S., and Inoue, A. (1980). Eur. J. Biochem., 109, 349–357.PubMedCrossRefGoogle Scholar
  15. Hossenlopp, P., Wells, D., and Chambon, P. (1975). Eur. J. Biochem., 58, 237–251.PubMedCrossRefGoogle Scholar
  16. Huet, J., Buhler, J.M., Sentenae, A., and Fromageot, P.(1977) J. Biol. Chem. 252, 8848–8855.PubMedGoogle Scholar
  17. Inoue, A., Tei, Y., Hasuma, T., Yukioka, M., and Morisawa, S. (1980). Eur. J. Biochem., 109, 349–357.PubMedCrossRefGoogle Scholar
  18. Jacob, S.T., Duceman, B.W., and Rose, K.M. (1981). Med. Biol., 59, 381–388.PubMedGoogle Scholar
  19. Jacob, S.T., Rose, K.M., and Canellakis, Z-N. (1982). Adv. Polyamine Res., 4, 631–646.Google Scholar
  20. Knopf, K.W. (1979). Eur. J. Biochem., 98, 231–234.PubMedCrossRefGoogle Scholar
  21. Lerner, M.R., and Steitz, J.A. (1979). Proc. Natl. Acad. Sei. U.S.A., 76, 5495–5499.CrossRefGoogle Scholar
  22. Miyawaki, S., and Ritchie, R.-F. (1973). Arthritis Rheum. 16, 726–736.PubMedCrossRefGoogle Scholar
  23. Moiling, K., Bolognesi, D.P., Bauer, W., Busen, W., Plassmann, H.W., and Hausen, P. (1971). Nature, New Biol., 234, 240–243.CrossRefGoogle Scholar
  24. Notman, D.D., Kurata, N. and Tan, E.M. (1975). Ann. Intern. Med., 83, 464–469.PubMedGoogle Scholar
  25. Pinnas, J.L., Northway, J.D., and Tan, E.M. (1973). Immunol., 111, 996–1004.Google Scholar
  26. Reddy, R., Tan, E.M., Henning, D., Nohga, K., and Busch, H. (1983). J. Biol. Chem., 258, 1383–1386PubMedGoogle Scholar
  27. Roeder, R.G. (1976), in RNA Polymerase (Losick, R., and Chamberlin, M., eds.) Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 285–329.Google Scholar
  28. Rose, K.M., Bell, L.E., Siefken, D.A., and Jacob, S.T. (1981a), J. Biol. Chem., 256, 7468–7477.PubMedGoogle Scholar
  29. Rose, K.M., Duceman, B.W., and Jacob, S.T. (1981b). Isozymes: Current Topics in Biological and Medical Research, 5, 115–141.Google Scholar
  30. Rose, K.M., Stetler, D.A., and Jacob, S.T. (1981c). Proc. Natl. Acad. Sci. U.S.A., 78, 2833–2837.PubMedCrossRefGoogle Scholar
  31. Rose, K.M., and Jacob, S.T. (1979). J. Biol. Chem., 254, 10256–10261.PubMedGoogle Scholar
  32. Rose, K.M., and Jacob, S.T. (1980). Biochemistry, 19, 1472– 1476.PubMedCrossRefGoogle Scholar
  33. Rose, K.M., and Jacob, S.T. (1983). Molecular aspects of cellular regulation, 3, in press.Google Scholar
  34. Rose, K.M., Duceman, B.W., and Jacob, S.T. (1983a). Adv. Enzym. Regul., 21, 307–319.CrossRefGoogle Scholar
  35. Rose, K.M., Stetler, D.A., and Jacob, S.T. (1983b), in Enzymes of Nucleic Acid Synthesis and Modification (S.T. Jacob, Ed.), CRC Press, Boca Raton, Florida, pp. 135–157.Google Scholar
  36. Sharp, G.C., Irwin, W.S., Tan, E.M., Gould, R.C., and Holman, H.R. (1972). Am. J. Med., 52, 148–159.PubMedCrossRefGoogle Scholar
  37. Stahl, H., and Knippers, R. (1980). Biochim. Biophys. Acta., 614, 71–80.PubMedGoogle Scholar
  38. Stetler, D.A., and Rose, K.M. (1983). Biochem. Biophys. Acta., 739. 105–113.PubMedGoogle Scholar
  39. Stetler, D.A., Rose, K.M., Wenger, M.E., Berlin, C.M., and Jacob, S.T. (1982). Proc. Natl. Acad. Sci. U.S.A., 79, 7499–7503.PubMedCrossRefGoogle Scholar
  40. Tan, E.M. (1982). Adv. Immunol., 33, 167–240.PubMedCrossRefGoogle Scholar
  41. Thornburg, W., and Lindeil, T.J. (1977). J. Biol. Chem., 252, 6660–6665.PubMedGoogle Scholar
  42. Verma, I.M. (1975). J. Virol., 15, 121–126.PubMedGoogle Scholar

Copyright information

© The Human Press Inc. 1983

Authors and Affiliations

  • Odd Nygård
    • 1
  • Peter Westermann
    • 2
  1. 1.The Wenner-Gren InstituteUniversity of StockholmStockholmSweden
  2. 2.Central Institute of Molecular BiologyAcademy of Sciences of GDRBerlin-BuchGermany

Personalised recommendations