Advertisement

Synthesis and Possible Role of O- and N-Linked Oligosaccharides of Yeast Glycoproteins

  • Odd Nygård
  • Peter Westermann
Chapter
  • 63 Downloads

Abstract

All dolichol-dependent glycosyl transfer reactions of O- and N-glycosylation in yeast proceed at the ER. The mannosyl transferase forming Dol-P-Man from GDP-Man and Dol-P also translocates the mannosyl residue across a liposomal membrane and transfers it to internal GDP. When [3H] GDP-[14C] Man is used as external substrate in this reaction, only 14C-radioactivity is internalized into the liposome.

Keywords

Yeast Cell Sorting Signal Glycoprotein Synthesis Glucosyl Unit Dolichyl Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tanner, W., Haselbeck, A., Schwaiger, H. and Lehle, L. (1982) Phil.Trans.R.Soc.Lond. B 300, 185–194CrossRefGoogle Scholar
  2. 2.
    Arnold, E. and Tanner, W. (1982) FEBS Lett. 148, 49–53PubMedCrossRefGoogle Scholar
  3. 3.
    Kaplan, A., Achord, D.T. and Sly, W.S. (1977) Proc.Natl. Acad.Sci. U.S.A. 74, 2026–2030PubMedCrossRefGoogle Scholar
  4. 4.
    Schwaiger, H., Hasilik, A., von Figura, K., Wiemken, A. and Tanner, W. (1982) Biochem. Biophvs. Res. Commun. 104, 950–956CrossRefGoogle Scholar
  5. 5.
    Owada, M. and Neufeld, E.F. (1982) Biochem. Biophys. Res. Commun. 105, 814–820PubMedCrossRefGoogle Scholar
  6. 6.
    Jessup, W. and Dean, R.T. (1982) Biochem. Biophys. Res. Commun. 105, 922–927PubMedCrossRefGoogle Scholar
  7. 7.
    Waheed, A., Pohlmann, R., Hasilik, A., von Figura, K. and van Elsen, A. and Leroy, J.G. (1982) Biochem. Biophys. Res. Commun. 105, 1052–1058PubMedCrossRefGoogle Scholar
  8. 8.
    Klebl, F., Huffaker, T. and Tanner, W. (1983) Exp. Cell. Res., submittedGoogle Scholar
  9. 9.
    Klebl, F., Huffaker, T. and Tanner, W. (1983) Exp. Cell. Res., submittedGoogle Scholar
  10. 10.
    Tanner, W. (1969) Biochem. Biophys. Res. Commun. 35, 144–150PubMedCrossRefGoogle Scholar
  11. 11.
    Jung, P. and Tanner, W. (1973) Eur. J. Biochem. 37, 1–6PubMedCrossRefGoogle Scholar
  12. 12.
    Sentandreu, R. and Northcote, D.H. (1969) Carbohydr. Res. 10, 584–585CrossRefGoogle Scholar
  13. 13.
    Ballou, C.E. (1976) Adv. Microb. Physiology 14, 93–158CrossRefGoogle Scholar
  14. 14.
    Babczinski, P. and Tanner, W. (1973) Biochem. Biophys. Res.Commun. 54, 1119–1129PubMedCrossRefGoogle Scholar
  15. 15.
    Sharma, C.B., Babczinski, P., Lehle, L. and Tanner, W. (1974) Eur. J. Biochem. 46, 35–41PubMedCrossRefGoogle Scholar
  16. 16.
    Bretthauer, R.K. and Wu, S. (1975) Arch. Biochem. Biophys. 167, 151–160PubMedCrossRefGoogle Scholar
  17. 17.
    Lehle, L. (1981) in: Encyclopedia of Plant Physiology New Series, Vol. 13 B; eds. VJ. Tanner and F.A. Loewus, pp 459–483, Springer-Verlag Berlin Heidelberg New YorkGoogle Scholar
  18. 18.
    Lehle, L., Schulz, I. and Tanner, W. (1980) Arch. Microbiol. 127, 231–237CrossRefGoogle Scholar
  19. 19.
    Parodi, A.J. (1981) in: Yeast cell, envelopes: biochemistry, biophysics and ultrastructure, vol. 2, cd. W.N. Arnold, pp 47–64, Boca Raton: CRC Press, Inc.Google Scholar
  20. 20.
    Robbins, P.W., Hubbard, S.C., Turco, S.J. and Wirth, D.F. (1977) Cell 12, 893–900PubMedCrossRefGoogle Scholar
  21. 21.
    Li, E., Tabas, I. and Kornfeld, S. (1978) J. Biol. Chem. 253, 7762–7770PubMedGoogle Scholar
  22. 22.
    Byrd, J.C., Tarentino, A.J.., Maley, F., Atkinson, P.H. and Trimble, R.B. (1982) J. Biol. Chem. 257, 14657–14666PubMedGoogle Scholar
  23. 23.
    Esmon, B., Nowick, P. and Schekman, R. (1981) Cell 25, 451–460PubMedCrossRefGoogle Scholar
  24. 24.
    Marriott, M. and Tanner, W. (1979) J. Bacteriol. 139, 565–572Google Scholar
  25. 24.
    Marriott, M. and Tanner, W. (1979) J. Bacteriol. 139, 565–572Google Scholar
  26. 26.
    Novick, P., Field, C. and Schekman, R. (1980) Cell 21, 205–215PubMedCrossRefGoogle Scholar
  27. 27.
    Larriba, G., Elorza, M.V., Vallanueva, J.R. and Sentandreu, R. (1976) FEBS Lett. 71, 316–320PubMedCrossRefGoogle Scholar
  28. 28.
    Rothman, J.E. and Lodish, H.F. (1977) Nature 269, 775–780PubMedCrossRefGoogle Scholar
  29. 29.
    Lennarz, W.J. (1982) Phil. Trans. R. Soc. Lond. B 300, 129–144CrossRefGoogle Scholar
  30. 30.
    Snider, M.D., Huffaker, T.C., Couso, J.R. and Robbins, P.W. (1982) Phil. Trans. R. Soc. Lond. B 300, 207–223CrossRefGoogle Scholar
  31. 31.
    Haselbeck, A. and Tanner, W. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 1520–1524PubMedCrossRefGoogle Scholar
  32. 32.
    Kuo, S.-C., and Lampen, J.O. (1974) Biochem. Biophys. Res. Commun. 58, 287–295PubMedCrossRefGoogle Scholar
  33. 33.
    Matile, Ph. (1978) Ann. Rev. Plant Physiol. 29, 193–213CrossRefGoogle Scholar
  34. 34.
    Hashimoto, C., Cohen, R.E., Zhang, W.-J. and Ballou, C.E. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 2244–2248PubMedCrossRefGoogle Scholar
  35. 35.
    Neufeld, E. and Ashwell, C. (1980) In: The biochemistry of glycoproteins and proteoglycans, ed. W.J. Lennarz, pp 241–266, Plenum Press, New York and LondonGoogle Scholar
  36. 36.
    Hasilik, A. and Tanner, W. (1978) Eur. J. Biochem. 91, 567–575PubMedCrossRefGoogle Scholar
  37. 37.
    Hartwell, L.H. (1974) Bacteriol. Rev. 38, 164–198PubMedGoogle Scholar
  38. 38.
    Huffaker, T.C. and Robbins, P.W. (1982) J. Biol. Chem. 257, 3203–3210PubMedGoogle Scholar
  39. 39.
    Nishikawa, Y., Yamamoto, Y., Kaji, K. and Misui, H. (1980) Biochem. Biophys. Res. Commun. 97, 1296–2303.PubMedCrossRefGoogle Scholar
  40. 40.
    Biicking-Throm, E., Duntze, W., Hartwell, L.H. and Manney, T.R. (1973) Exp. Cell. Res. 76, 99–110CrossRefGoogle Scholar
  41. 41.
    Throm, E. and Duntze, W. (1970) J. Bacteriol. 104, 1388–1390PubMedGoogle Scholar
  42. 42.
    Fujmura, H., Skimizu, T., Yoshida, K. and Yanagishima, N. (1983) FEBS Lett. 153, 16–20CrossRefGoogle Scholar

Copyright information

© The Human Press Inc. 1983

Authors and Affiliations

  • Odd Nygård
    • 1
  • Peter Westermann
    • 2
  1. 1.The Wenner-Gren InstituteUniversity of StockholmStockholmSweden
  2. 2.Central Institute of Molecular BiologyAcademy of Sciences of GDRBerlin-BuchGermany

Personalised recommendations