Effect of Elongation Inhibitors on the Accuracy of Poly(U) Translation

  • Odd Nygård
  • Peter Westermann


In view of the fact that numerous steps are involved in protein synthesis, the number of translational errors occurring in vivo is surprisingly low. It now seems clear that translational errors involve either a mismatching at the codon-anticodon level (Edelman and Gallant, 1977) or a mischarging of tRNA (Loftfield and Vandervagt, 1972). In the poly(Phe) synthesizing system which is extensively used in translational fidelity studies, the latter possibility is minimal since the two amino acids Phe and Leu are widely different in structure. Recent work has revealed several important factors governing the fidelity of in vitro polypeptide synthesis. The nature and concentration of the polycations present for example, are important.


Ribosomal Subunit Translational Error Translational Accuracy Polypeptide Synthesis Lational Accuracy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, A.K., Olsnes, S. and Pihl, A. (1979) FEBS Lett. 101, 93–96.PubMedCrossRefGoogle Scholar
  2. Abraham, A. K. (1982) Prog. Nucleic Acid Res.Mol. Biol. 28, 81–100.CrossRefGoogle Scholar
  3. Abraham, A. K. and Flatmark, T. (1982) Advances in Polyamine Research vol. 4. 255–265. ( Bachrach, U., Kaye, A. and Chayen, R. Eds.)Raven Press, New York.Google Scholar
  4. Andersson, D.J., Bohman, K., Isaksson, L.A. and Kurland, C.G. (1983) Mol.Gen.Genet. 187, 467–472.CrossRefGoogle Scholar
  5. Benson, S., Olsnes, S., Pihl, A., Skorve, L. and Abraham, A.K. (1975) Eur.J.Bloche». 59, 573–580.CrossRefGoogle Scholar
  6. Edelman, P. and Gallant, J. (1977) Cell, 10, 131–137.CrossRefGoogle Scholar
  7. Gavrilova, L.P., Kostiashkina, O.E., Koteliansky, V.E., Rutkevitch, N.M. and Spirin, A.S. (1976) J.Mol.Biol., 101, 537–552.PubMedCrossRefGoogle Scholar
  8. Jelenc, P.C. and Kurland, C.G. (1979) Proc.Natl. Acad.Sci. USA, 76, 3174–3178.PubMedCrossRefGoogle Scholar
  9. Kurkinen, M. (198l) FEBS Lett., 124, 79–83 .PubMedCrossRefGoogle Scholar
  10. Kurland, C.G. (1982) Cell, 28, 201–202.PubMedCrossRefGoogle Scholar
  11. Loftfield, R.B. and Vanderjagt, D. (1972) Biochem. J., 128. 1353–1356.PubMedGoogle Scholar
  12. Laughrea, M. (1981) Biochemie, 63, 145–168.CrossRefGoogle Scholar
  13. Olsnes, S. and Pihl, A. (1972) Nature, 238, 459–464.PubMedCrossRefGoogle Scholar
  14. Sakai, T.T. and Cohen, S. (1976) Proq.Nucleic Acid Res. and Mol.Biol., 17, 15–41.CrossRefGoogle Scholar
  15. Wagner, E.G.H., Ehrenberg, M. and Kurland, C.G. (1982) Mol.Gen.Genet., 185, 269–274.PubMedCrossRefGoogle Scholar

Copyright information

© The Human Press Inc. 1983

Authors and Affiliations

  • Odd Nygård
    • 1
  • Peter Westermann
    • 2
  1. 1.The Wenner-Gren InstituteUniversity of StockholmStockholmSweden
  2. 2.Central Institute of Molecular BiologyAcademy of Sciences of GDRBerlin-BuchGermany

Personalised recommendations