Advertisement

The Allosteric Behaviour of the Elongation Factor EF-Tu

  • Odd Nygård
  • Peter Westermann
Chapter
  • 63 Downloads

Abstract

The E. coli factor EF-Tu is a multifunctional protein that interacts with guanine nucleotides, tRNA, the elongation factor EF-Ts, the ribosome, the antibiotics kirromycin and pulvomycin, and probably bacteriophage RNA. It thus fulfils an essential function in protein synthesis (Miller & Weissbach, 1977; Kaziro, 1978) and phage RNA replication (Blumenthal & Carmichael, 1979). It is an abundant cytoplasmic protein that, depending on bacterial growth conditions, can amount from five to ten percent of the total intracellular protein (Furano, 1975; Van der Meide et al., 1983). Its amino acid sequence (393 residues) has been determined (Arai et al.,1980; Jones et al., 1980) and considerable progress has been made in the elucidation of its three-dimensional structure (Kabsch et al., 1977; Jurnak et al., 1977; Rubin et al. 1981; Clark et al., 1982).

Keywords

tRNA Binding Uncharged tRNA tRNA Binding Site Allosteric Behavior Polypeptide Chain Elongation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amons, R., Pluijms, W., Roobol, K. & Möller, W. (1983). FEBS Letters, 153, 37–42.PubMedCrossRefGoogle Scholar
  2. An, G. & Friesen, J.D. (1980). Gene, 12, 33–39.PubMedCrossRefGoogle Scholar
  3. Arai, K., Clark, B.F.C., Kawakita, M., Nakamura, S., Ishikawa, I., & Kaziro, Y. (1974). J.Bbiochem., 76, 523–534.Google Scholar
  4. Arai, K., Clark, B.F.C., Duffy, L., Jones, M.D., Kaziro, Y., Laursen, R.A., L’Italien, J., Miller, D.L., Nagarkatti, S., Nakamura, S., Nielsen, K.M., Petersen, T.E., Takahashi, K. & Wade, M. (1980). Proc. Nat. Acad. Sci., U.S.A. 77, 1326–1330.CrossRefGoogle Scholar
  5. Blumenthal, T. & Carmichael, G.G. (1979). Annu. Rev. Biochem. 48, 525–548.PubMedCrossRefGoogle Scholar
  6. Blumenthal, T., Saari, B., Van der Meide, P.H. & Bosch, L. (1980). J. Biol. Chem. 255, 5300–5305.PubMedGoogle Scholar
  7. Caplan, A.B. & Menninger, J.R. (1979). J. Mol. Biol. 134, 621–637.PubMedCrossRefGoogle Scholar
  8. Chinali, C., Wolf, H. & Permeggiani, A. (1977). Eur. J. Biochem.. 75, 55–65.PubMedCrossRefGoogle Scholar
  9. Clark, B.F.C., La Cour, T.F.M., Fontecilla-Camps, J., Morikawa, K., Nielsen, K.M., Nyborg, J. & Rubin, J.R. (1982). FEBS fleeting on Cell Function and Differentiation, Vol. 3, Symp. 12.Google Scholar
  10. De Groot, N., Panet, A. & Lapidot, I. (1971). Eur. J. Biochem. 23, 523–527.PubMedCrossRefGoogle Scholar
  11. Duffy, L.K., Gerber, L., Johnson, A.E. & Miller, D.L. (1981). Biochemistry, 20, 4663–4666.PubMedCrossRefGoogle Scholar
  12. Duisterwinkel, F.J., De Graaf, J.M., Schretlen, P.J.M., Kraal, B. & Bosch, L. (1981a). Eur. J. Biochem. 117, 7–12.CrossRefGoogle Scholar
  13. Duisterwinkel, F.J., De Graaf, J.M., Kraal, B. & Bosch, L. (1981b). FEBS Letters, 131., 89–93.CrossRefGoogle Scholar
  14. Duisterwinkel, F.J. (1981). Ph.D. Thesis, University of Leiden, The Netherlands.Google Scholar
  15. Fischer, E., Wolf, H., Hantke, K., & Permeggiani, A., (1977) Proc. Nat. Acad. Sci., U.S.A 74 4341–4345.CrossRefGoogle Scholar
  16. Furano, A.V. (1975). Proc. Nat. Acad. Sci., U.S.A. 72, 4780–4784.CrossRefGoogle Scholar
  17. Gavrilova, L.P., Perainova, I.N. & Spirin, A.S. (1981). J. Mol. Biol. 149, 69–78.PubMedCrossRefGoogle Scholar
  18. Crosjean, H.J., De Henan, S. & Crothers, D. (1978). Proc. Nat. Acad. Sci., U.S.A. 75, 610–614.CrossRefGoogle Scholar
  19. Hansske, F. & Cramer, F. (1979). In Methods in Enzymology (Moldave, R. & Grossmann, L., eds.). Vol. 59, Academic Press, New York, pp. 172–181.Google Scholar
  20. Hopfield, J.J., (1974). Proc. Nat. Acad. Sci., U.S.A. 71, 4135–1439.CrossRefGoogle Scholar
  21. Jonák, J., Smrt, J., Holý, A. & Rychlik, I. (1980). Eur. J. Biochem. 105, 315–320.PubMedCrossRefGoogle Scholar
  22. Jones, M.D., Petersen, T.E., Nielsen, K.M., Magnusson, S., Sottrup-Jensen, L., Gausing, K. & Clark, B.F.C. (1980). Eur. J. Biochem. 108, 507–526.PubMedCrossRefGoogle Scholar
  23. Jurnak, F., Rich, A.S., Miller, D.L. (1977). J. Mol. Biol. 115, 103–110.PubMedCrossRefGoogle Scholar
  24. Kabsch, W., Gast, W.H., Schulz, G.E. & Leberman, R. (1977). J. Mol. Biol. 117, 999–1012.PubMedCrossRefGoogle Scholar
  25. Kaziro, Y. (1978). Biochim. Biophys. Acta, 505, 95–127.PubMedGoogle Scholar
  26. Kurland, C.G. (1979). In Ribosomes, structure, function and genetic (Chambliss, C., Craven, G.B., Davies, J., Davis, K., Kahan, L. & Nomura, M., eds.), University Park Press, Baltimore, pp. 597–614.Google Scholar
  27. Lührmann, L., Eckhardt, H. & Stöffler, G. (1979). Nature, 280, 423–425.PubMedCrossRefGoogle Scholar
  28. Miller, D.L. & Weissbach, H. (1977). In Molecular Mechanisms of Protein Biosynthesis (Weissbach, H. & Pestka, S., Academic Press, New York, pp. 323–373.Google Scholar
  29. Miller, D.L., Nagarkatti, S., Laursen, S.A., Parker, J. & Friesen, J.D., (1978) Mol Gen Genet. 159, 67–52.CrossRefGoogle Scholar
  30. Permeggiani, A., & Sander, G. (1980). In Topics in Antibiotic Chemistry (Sammes, P.C., ed.). Vol. 5, John Wiley and Sons, England, pp. 165–221.Google Scholar
  31. Rubin, J.R., Morikawa, K., Nyborg, J., La Cour, T.F.M., Clark, R.F.C. & Miller, D.L. (1981). FEBS Letters, 29, 177–179.CrossRefGoogle Scholar
  32. Shibuya, M., Naskimoto, H. & Kaziro, I. (1979). Mol. Gen. Genet. 170, 231–234.PubMedCrossRefGoogle Scholar
  33. Thompson, R.C. & Karin, A.M. (1982). Proc. Nat. Acad. Sci., U.S.A. 79, 4922–4926.CrossRefGoogle Scholar
  34. Van der Meide, P.H., Borrman, T.H., Van Kimmenade, A.M.A., Van de Putte, P., & Bosch, L. (1980). Proc. Nat. Acad. Sci., U.S.A. 77, 3922–3926.CrossRefGoogle Scholar
  35. Van der Meide, P.H., Vijgeboom, E., Talens, A. & Bosch, L. (1983). Eur. J. Biochem. 130, 397–407.PubMedCrossRefGoogle Scholar
  36. Van Noort, J.M., Duisterwinkel, F.J., Jonák, J., Sedláček, J., Kraal, B. & Bosch, L. (1982). EMB0 Journal, 1, 1199–1205.Google Scholar
  37. Weiss, R. & Gallant, J. (1983). Nature, 302, 389–393.PubMedCrossRefGoogle Scholar
  38. Wolf, H., Chinali, C. & Parmeggiani, A.(1974). Proc. Nat. Acad. Sci., U.S.A. 71, 4910–4914.CrossRefGoogle Scholar
  39. Wolf, H., Chinali, C. & Parmeggiani, A. (1977). Eur. J. Biochem. 75, 67–75.PubMedCrossRefGoogle Scholar
  40. Yokota, T., Sugisaki, H., Takanami, M. & Kaziro, I. (1980). Gene, 12, 25–31.PubMedCrossRefGoogle Scholar

Copyright information

© The Human Press Inc. 1983

Authors and Affiliations

  • Odd Nygård
    • 1
  • Peter Westermann
    • 2
  1. 1.The Wenner-Gren InstituteUniversity of StockholmStockholmSweden
  2. 2.Central Institute of Molecular BiologyAcademy of Sciences of GDRBerlin-BuchGermany

Personalised recommendations