Advertisement

Structural Organization of Initiation Complexes Involving the Eukaryotic Protein Synthesis Initiation Factors eIF-2 and eIF-3

  • Odd Nygård
  • Peter Westermann
Chapter
  • 63 Downloads

Abstract

The positioning of a ribosome into the correct reading frame on the messenger RNA is a multiple step process, which in eukaryotes involves at least seven different initiation factors, eIF-1, eIF-2, eIF-3, eIF-4A, eIF-4B, eIF-4C and eIF-5 (Trachsel et al., 1977; Jagus et al., 1981). Consistent with its essential role in the overall translation, the initiation process is an important site for translational regulation. The most extensively studied regulatory systems involve initiation factor eIF-2 but other initiation factors have also been postulated to take part in regulatory mechanisms (for a review see Jackson, 1980). In vivo some of the initiation factors, including eIF-2 and eIF-3, are associated with native 40S ribosomal subparticles (Sundkvist & Staehelin, 1975) indicating that the two factors participate in the formation of initiation complexes on the small ribosomal subparticle even under physiological conditions. In order to obtain some further insight into the functional mechanisms of the initiation process we have studied the topographical arrangement of the components Involved in the organization of the active site on the 40S particle in which eIF-2, eIF-3, GTP, Met-tRNAf and mRNA arc specifically joined together.

Keywords

Ribosomal Protein Binary Complex Initiation Complex Sucrose Gradient Centrifugation Ternary Complex Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrieux, A. & Rosenfeld, M.G. (1977).J. Biol. Chem. 252 3843–3847.PubMedGoogle Scholar
  2. Benne, R. & Hershey, J.W.B. (1978). J. Biol. Chem. 253 3078–3087.PubMedGoogle Scholar
  3. Benne, R., Wong, C., Luedi, M. & Hershey, J.W.B. (1976). J. Biol. Chem. 251 7675–7681.PubMedGoogle Scholar
  4. Emanuilov, I., Sabatini, D.D., Lake, J.A. & Freienstein, C. (1978). Proc. Nat. Acad. Sci., U.S.A. 75 1389–1393.CrossRefGoogle Scholar
  5. Gross, B., Westermann, P. & Bielka, H. (1983). EMBO J.2 255–260.PubMedGoogle Scholar
  6. Hirsch, C.A., Cox, M.A., van Venrooij, W.C.W. & Henshaw, E.C. (1973). J. Biol. Chem. 248 4377–4385.PubMedGoogle Scholar
  7. Jackson, R.J. (1980). In Protein Biosynthesis in Eukaryotes (Pérez-Bercoff, R., ed.), pp. 363–418, Plenum Press, New York.Google Scholar
  8. Jagus, R., Anderson, W.F. & Safer, B. (1981). Prog. Nucl. Acid Res. Hoi. Biol. 25 127–185CrossRefGoogle Scholar
  9. Kaempfer, R. & Kaufman, J. (1972). Proc. Nat. Acad. Sci., U.S.A. 69 3317–3321.CrossRefGoogle Scholar
  10. Kaempfer, R ., Hollander, R., Arams, W. & Israeli, R. (1978). Proc. Nat. Acad. Sci., U.S.A. 75 209–213.CrossRefGoogle Scholar
  11. Kühlbrandt, W. & Unwin, P.N.T. (1982). J. Mol. Biol. 156, 431–448.PubMedCrossRefGoogle Scholar
  12. Laemmli, U.K. (1970). Nature 227 680–685.PubMedCrossRefGoogle Scholar
  13. Lutsch, G., Noll, F., Theise,H Enzmann, G. & Bielka, H. (1979). Molec. Gen. Genet. 176 281–291.PubMedGoogle Scholar
  14. Lutsch, G., Noll, F., Theise, H. Enzmann, G. & Bielka, H. (1980). Studia biophys.79 125–126.Google Scholar
  15. Martini, O.H.W. & Gould, H.J. (1975). Mol. Gen. Genet. 142 299–316.Google Scholar
  16. Nygård, 0. & Nika, H. (1982). EMBO J. 1 357–362.PubMedGoogle Scholar
  17. Nygård, 0. & Westermann, P. (1982a). Bloch im. Biophys. Acta 692 263–269.Google Scholar
  18. Nygård, 0. & Westermann, P. (1982b). Nucleic Acids Res. 10 1327–1334.CrossRefGoogle Scholar
  19. Nygård, 0., Westermann, P. & Hultin, T. (1980a). Biochim. Biophys. Acta 608 196–200.Google Scholar
  20. Nygård, 0., Westermann, P. & Hultin, T. (1980b). FEBS Lett. 113 125–128.CrossRefGoogle Scholar
  21. Safer, B., Peterson, D. & Merrick, W.C. (1977). In Translation of Natural and Synthetic Polynucleotides (Legocki, A.B., ed.), Poznan Agricultural University, Poznan.Google Scholar
  22. Safer, B., Adams, S.L., Anderson, W.F. & Merrick, W.C. (1975). J. Biol. Chem. 250 9076–9082.PubMedGoogle Scholar
  23. Schreier, M.H. & Staehelin, T. (1973). Nature New Biol. 242 35–38.PubMedGoogle Scholar
  24. Sköld, S.-E. (1981). Bioehimie 63 53–60.CrossRefGoogle Scholar
  25. Sköld, S.-E . (1982). Eur. J. Biöchem. 127 225–229.PubMedCrossRefGoogle Scholar
  26. Stahl, J. & Kobets, N.D. (1981). FEBS Lett. 123 269–272.PubMedCrossRefGoogle Scholar
  27. Sundkvist, I.C. and Staehelin, T. (1975). J. Mol. Biol. 99 401–418.PubMedCrossRefGoogle Scholar
  28. Takahishi, Y. and Ogata, K. (1981). J. Blochen. 90 1549–1552.Google Scholar
  29. Terao, K., Uchiumi, T. and Ogata, K. (1980a). Biochim. Biophys. Acta 609 306–312.Google Scholar
  30. Terao, K., Uchiumi, T., Kobayashi, Y. and Ogata, K. (1980b). Biochim. Biophys. Acta 621 72–82.Google Scholar
  31. Trachsel, H. and Staehelin, T. (1979). Biochim. Biophys. Acta 565 305–314.PubMedGoogle Scholar
  32. Trachsel, H., Schreier, M.H., Erni, B. and Staehelin, T. (1977). J. Mol. Biol. 116 755–767.PubMedCrossRefGoogle Scholar
  33. Uchiumi, T., Terao, K. and Ogata, K. (1980). J. Biochem. 88 1033–1044.PubMedGoogle Scholar
  34. Uchiumi, T., Terao, K. and Ogata, K. (1981). J. Biochera. 90 185–193.Google Scholar
  35. Welfle, H., Stahl, J. & Bielka, H. (1972). FEBS Lett. 26 228–232.PubMedCrossRefGoogle Scholar
  36. Westermann, P. & Nygård, 0. Submitted for publication to Biochim. Biophys. Acta.Google Scholar
  37. Westermann, P., Nygård, 0. & Bielka, H. (1980). Nucleic Ac ids Res. 8 3065–3071.CrossRefGoogle Scholar
  38. Westermann, P., Nygård, 0. & Bielka, H. (1981). Nucleic Acids Res. 9 2387–2396.PubMedCrossRefGoogle Scholar
  39. Westermann, P., Heumann, W., Boramer, U.-A., Bielka, H., Nygård, 0. & Hultin, T. (1979). FEBS Lett. 97 101–104.PubMedCrossRefGoogle Scholar
  40. Vlasik, T.N., Domogatsky, S.P., Bezlepkina, T.A. & Ouchinnikov, L.P. (1980). FEBS Lett. 116 8–10.PubMedCrossRefGoogle Scholar
  41. Zardeneta, C., Kramer, C. & Hardesty, B. (1982). Proc. Nat. Acad. Scl., U.S.A. 79, 3158–3161.CrossRefGoogle Scholar

Copyright information

© The Human Press Inc. 1983

Authors and Affiliations

  • Odd Nygård
    • 1
  • Peter Westermann
    • 2
  1. 1.The Wenner-Gren InstituteUniversity of StockholmStockholmSweden
  2. 2.Central Institute of Molecular BiologyAcademy of Sciences of GDRBerlin-BuchGermany

Personalised recommendations