Advertisement

Cone Pathways in the Mammalian Retina

Conference paper
Part of the Cell and Developmental Biology of the Eye book series (EYE)

Abstract

The basic neurocircuitry underlying the highest visual acuity pathways in such animals as birds, primates and certain reptiles (Cajal, 1933) is thought to consist of a bipolar cell/ganglion cell chain connected in a one to one fashion with a single cone photoreceptor. In the monkey retina, for example, there are midget bipolar cells and midget ganglion cells that subserve an individual cone (Polyak, 1941), In 1969 it was reported that the cone midget bipolar pathways of the rhesus monkey retina consisted of a pair of bipolars characterized by different types of synaptic contact with the cone pedicles in the outer plexiform layer (OPL) (Kolb et al., 1969). One of the midget bipolars inserted dendritic terminals into the synaptic complex of the cone pedicle to make “invaginating” contacts beneath the synaptic ribbon (Figures 1,2). The other midget bipolar, in contrast, made synaptic contacts with the surface of the cone pedicle on either side of the invaginating elements (Figures 1,3). In addition the two midget bipolar types were found to have different termination levels of their axons in the inner plexiform layer (IPL).

Keywords

Beta Cell Ganglion Cell Receptive Field Bipolar Cell Amacrine Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, R.A. (1969). The retinal bipolar cells and their synapses in the inner plexiform layer. In The retina: morphology, function and clinical characteristics. (eds. Straatsma, B.R., Hall, M.O., Allen, R.A. and Crescitelli, F.) pp. 101–143. Forum in Medical Sciences. No. 8 Berkeley: University of California Press.Google Scholar
  2. Boycott, B.B. and Dowling, J.E. (1969). Organization of the primate retina: light microscopy. Phil. Trans. R. Soc. (Lond), B, 255: 109 – 184.CrossRefGoogle Scholar
  3. Boycott, B.B. and Kolb, H. (1973). The connections between the bipolar cells and photoreceptors in the retina of the domestic cat. J. Comp. Neur., 148: 91 – 114.PubMedCrossRefGoogle Scholar
  4. Boycott, B.B. and Wässle, H. (1974). The morphological types of ganglion cells of the domestic cat’s retina. J. Physiol. (Lond), 240: 397 – 419.Google Scholar
  5. Cajal, S.R. (1933). Die Retina der Wirbeltiere. Wiesbaden: Bergmann; Trans. Thorpe, S.A. and Glickstein, M. (1972). The Structure of the Retina. Thomas, Springfield.Google Scholar
  6. Cleland, B.G. and Levick, W.R. (1974a). Brisk and sluggish concentrically organized ganglion cells in the cat’s retina. J. Physiol. (Lond.), 240: 421 – 456.Google Scholar
  7. Dowling, J.E. (1970). Organization of vertebrate retinas. Invest. Ophthal., 9: 655 – 680.PubMedGoogle Scholar
  8. Dowling, J.E. and Werblin, F.S. (1969). Organization of the retina of the mudpuppy, Necturus maculosus. I. Synaptic structure, J. Neurophysiol., 32: 315 – 338.Google Scholar
  9. Enroth-Cugell, C. and Robson, J.G. (1966). The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. (Lond.), 187: 517 – 552.Google Scholar
  10. Famiglietti, E.V. and Kolb, H. (1975). A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina. Brain Res. 84: 293 – 300.PubMedCrossRefGoogle Scholar
  11. Famiglietti, E.V. and Kolb, H. (1976). Structural basis for ‘ON’ and ‘OFF’-center responses in retinal ganglion cells. Science 194: 193 – 195.PubMedCrossRefGoogle Scholar
  12. Fukuda, Y. and Stone, J. (1974). Retinal distribution and central projections of Y-, X-, and W-cells of the cat’s retina. J. Neurophysiol., 37: 749 – 772.PubMedGoogle Scholar
  13. Gouras, P. (1971). The function of the midget cell system in primate color vision. Vision Res. Suppl., 3: 397 – 410.CrossRefGoogle Scholar
  14. Ikeda, H. and Wright, M.J. (1972). Differential effects on refractive errors and receptive field organization of central and peripheral ganglion cells. Vision Res., 12: 1465 – 1476.PubMedCrossRefGoogle Scholar
  15. Ikeda, H. and Sheardown, M. (1983). Functional transmitters at retinal ganglion cells in the cat. Vision Res., 23: 1161 – 1174.PubMedCrossRefGoogle Scholar
  16. Kaneko, A. (1970). Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J. Physiol. (Lond), 207: 623 – 633.Google Scholar
  17. Kolb, H., Boycott, B.B. and Dowling, J.E. (1969). A second type of midget bipolar cell in the primate retina. Appendix. Phil Trans. R. Soc. (Lond.), B. 255: 177 – 184.Google Scholar
  18. Kolb, H. (1970). Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells. Phil. Trans. R. Soc. (Lond.), B, 258: 261 – 283.CrossRefGoogle Scholar
  19. Kolb, H. and Famiglietti, E.V. (1974). Rod and cone bipolar connections in the inner plexiform layer of the cat retina. Science 186: 47 – 49.PubMedCrossRefGoogle Scholar
  20. Kolb, H. (1979). The inner plexiform layer in the retina of the cat: electron microscope observations. J. Neurocytol., 8: 295 – 329.PubMedCrossRefGoogle Scholar
  21. Kolb, H. and Nelson, R. (1981). Three amacrine cells of the cat retina: morphology and intracellular responses. ARVO. Invest. Ophthal. Vis. Sci., Suppl., 20: p. 184.Google Scholar
  22. Kolb, H., Nelson, R. and Mariani, A. (1981). Amacrine cells, bipolar cells and ganglion cells of the cat retina: a Golgi study. Vision Res., 21: 1081 – 1114.PubMedCrossRefGoogle Scholar
  23. Kolb, H. and Nelson, R. (1983). Rod pathways in the retina of the cat. Vision Res., 23: 301 – 312.PubMedCrossRefGoogle Scholar
  24. Kuffler, S.W. (1953). Discharge patterns and functional organization of mammalian retina. J. Neurophysiol., 16: 47 – 68.Google Scholar
  25. Lasansky, A. (1978). Contacts between receptors and electrophysiologically identified neurones in the retina of the larval Tiger Salamander. J. Physiol. (Lond), 285: 531 – 542.Google Scholar
  26. Leventhal, A.G., Keens, J. and Törk, I. (1980). The afferent ganglion cells and cortical projections of the retinal recipient zone (RRZ) of the cat’s ‘Pulvinar complex’. J. Comp. Neur., 194: 535 – 554.PubMedCrossRefGoogle Scholar
  27. Leventhal, A.G., Rodieck, R.W. and Dreher, B. (1981). Retinal ganglion cell classes in old world monkeys: morphology and central projections. Science 213: 1139 – 1142.PubMedCrossRefGoogle Scholar
  28. Leventhal, A.G. (1982). Morphology and distribution of retinal ganglion cells projecting to different layers of the dorsal lateral geniculate nucleus in normal and siamese cats. J. Neurosci., 2: 1024 – 1042.PubMedGoogle Scholar
  29. Maguire, B.A., Stevens, J.K. and Sterling, P. (1982). “Push-pull” microcircuitry of the beta (X) ganglion cell in light adaptation. ARVO. Invest. Ophthal. Vis. Sci., Suppl. 22, p. 82.Google Scholar
  30. Marchiafava, P.L. and Weiler, R. (1980). Intracellular analysis and structural correlates of the organization of inputs to ganglion cells in the retina of the turtle. Proc. R. Soc. (Lond.) B, 208: 103 – 113.CrossRefGoogle Scholar
  31. Mariani, A.P. (1981). A diffuse, invaginating cone bipolar cell in primate retina. J. Comp. Neur. 197: 661 – 671.PubMedCrossRefGoogle Scholar
  32. Mariani, A.P. (1982). Newly identified bipolar cells in monkey retina. ARVO. Invest. Ophthal. Vis. Sci. Suppl. 22, p. 247.Google Scholar
  33. Marr, D. (1974). The computation of lightness by the primate retina. Vision Res. 14: 1377 – 1388.PubMedCrossRefGoogle Scholar
  34. Miller, R.F. (1980). The neuronal basis of ganglion-cell receptivefield organization and the physiology of amacrine cells. In Neuronal Interactions in the Vertebrate Retina. Neurosciences fourth study program, 1979 (Eds. Schmitt, F.O. and Worden, F.G.) MIT Press, Cambridge, MA and London, England.Google Scholar
  35. Miller, R.F. and Dacheux, R.F. (1976). Synaptic organization and ionic basis on On and Off channels in mudpuppy retina. I. Intracellular analysis of chloride-sensitive electrogenic properties of receptors, horizontal cells, bipolar cells and amacrine cells. J. Gen. Physiol. 67: 639 – 659.PubMedCrossRefGoogle Scholar
  36. Naka, K-I. (1976). Neuronal circuitry in the cat fish retina. Invest. Ophthal., 15: 926 – 935.Google Scholar
  37. Nelson, R. (1977). Cat cones have rod input: a comparison of the response properties of cones and horizontal cell bodies in the retina of the cat. J. Comp. Neur., 172: 109 – 135.PubMedCrossRefGoogle Scholar
  38. Nelson, R. (1980). Functional stratification of cone bipolar axons in the cat retina. ARVO. Invest. Ophthal. Vis. Sci., Suppl., p. 130.Google Scholar
  39. Nelson, R. (1982). All amacrine cells quicken time course of rod signals in the cat retina. J. Neurophysiol. 47: 928 – 947.PubMedGoogle Scholar
  40. Nelson, R., Famiglietti, E.V. and Kolb, H. (1978). Intracellular staining reveals different levels of stratification for on-center and off-center ganglion cells in the cat retina. J. Neurophysiol., 41: 472 – 483.PubMedGoogle Scholar
  41. Nelson, R., Kolb, H., Famiglietti, E.V. and Gouras, P. (1976). Neural responses in rod and cone systems of the cat retina: Intracellular staining reveals different levels of stratification for on-center and off-center ganglion cells in the cat retina. J. Neurophysiol. 41: 472 – 483.Google Scholar
  42. Nelson, R., Kolb, H., Robinson, M.M. and Mariani, A.P. (1981). Neural activity of the cat retina: cone pathways to ganglion cells. Vision Res. 21: 1527 – 1536.PubMedCrossRefGoogle Scholar
  43. Nelson, R. and Kolb, H. (1983). Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina. Vision Res., 23: 1183 – 1195.PubMedCrossRefGoogle Scholar
  44. Ogden, T.E. (1974). The morphology of retinal neurons of the owl monkey, Aotes. J. Comp. Neur., 153: 399 – 428.CrossRefGoogle Scholar
  45. Polyak, S.L. (1941). The Retina. Univ. of Chicago Press.Google Scholar
  46. Raviola, E. and Raviola, G. (1982). Structure of the synaptic membranes in the inner plexiform layer of the retina. A freeze-fracture study in monkeys and rabbits. J. Comp. Neur., 209: 233 – 248.PubMedCrossRefGoogle Scholar
  47. Steinberg, R.H., Reid, M. and Lacey, P.L. (1973). The distribution of rods and cones in the retina of the cat (Felis domesticus). J. Comp. Neur., 148: 229 – 248.PubMedCrossRefGoogle Scholar
  48. Sterling, P. (1983). Microcircuitry of the cat retina. Ann. Rev. in Neurosci., 6: 149 – 183.Google Scholar
  49. Stevens, J.K., McGuire, B.A. and Sterling, P. (1980). Toward a functional architecture of the retina: serial reconstruction of adjacent ganglion eels. Science 207: 317 – 319.PubMedCrossRefGoogle Scholar
  50. Stone, J. (1965). A quantitative analysis of the distribution of ganglion cells in the cat’s retina: J. Comp. Neur. 124: 337 – 352.PubMedCrossRefGoogle Scholar
  51. Stone, LJ. and Hoffmann, K.P. (1972). Very slow-conduction ganglion cells in the cat’s retina: a major new functional type? Brain Res., 43: 610 – 616.PubMedCrossRefGoogle Scholar
  52. Toyoda, J-I. and Kujiraoka, T. (1982). Analysis of bipolar cell respones elicited by polarization of horizontal cells. J. Gen. Physiol. 79: 131 – 145.PubMedCrossRefGoogle Scholar
  53. Toyoda, J-I. and Fugimoto, M. (1983). Analyses of neural mechanisms mediating the effect of horizontal cells polarization. Vision Res., 23: 1143 – 1150.PubMedCrossRefGoogle Scholar
  54. Wässle, H., Peichl, L. and Boycott, B.B. (1981a). Morphology and topography of on- and off- alpha cells in the cat retina. Proc. R. Soc. (Lond.), B, 212: 157 – 175.CrossRefGoogle Scholar
  55. Wässle, H., Boycott, B.B. and Illing, R.-B. (1981b). Morphology and mosaic of on- and off- beta cells in the cat retina and some functional considerations. Proc. R. Soc. (Lond.), B, 212: 177 – 195.CrossRefGoogle Scholar
  56. Werblin, F.S. and Dowling, J.E. (1969). Organization of the retina of the mdpuppy, Necturus maculosus. II. Intracellular recording. J. Neurophysiol., 32: 339 – 355.PubMedGoogle Scholar
  57. Yazulla, S. (1976). Cone input to bipolar cells in the turtle retina. Vision Res., 16: 737 – 744.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1984

Authors and Affiliations

  • H. Kolb

There are no affiliations available

Personalised recommendations