Skip to main content

The Significance of Chirality: Methods for Determining Absolute Configuration and Optical Purity of Pheromones and Related Compounds

  • Chapter
Techniques in Pheromone Research

Part of the book series: Springer Series in Experimental Entomology ((SSEXP))

Abstract

Since the beginning of pheromone science, the importance of geometrical isomerism in controlling the biological activity of an olefinic pheromone has well been recognized due to the brilliant work of Hecker and Butenandt described in Chapter 1. The importance of optical isomerism or chirality in pheromone perception by insects, however, remained obscure until the mid-1970s. Although Kafka’s (1973) pioneering work demonstrated the behavioral discrimination of the two enantiomers of 4-methylhexanoic acid by the honeybee, a great deal of effort among synthetic chemists was necessary before the complicated stereo-chemistry-pheromone activity relationship became clear. Only after the synthesis of a highly optically pure pheromone is it possible to know something about the stereochemistry-pheromone activity relationship through proper bioassay. The significance of chirality in pheromone perception is now being recognized by proper combination of chiral synthesis and bioassay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams MA, Nakanishi K, Still WC, Arnold DEV, Clardy J, Persoons CJ (1979) Sex pheromone of the American cockroach: Absolute configuration of periplanone-B. J Am Chem Soc 101: 2495 – 2498.

    Article  CAS  Google Scholar 

  • Ade E, Helmchen G, Heiligenmann G (1980) Synthesis of the stereoisomers of 17,21-dimethylheptatriacontane—Sex recognition pheromone of the tsetse fly. Tetrahedron Lett 21: 1137 – 1140.

    Article  CAS  Google Scholar 

  • Anderson RJ, Adams KG, Chinn HR, Henrick CA (1980) Synthesis of the optical isomers of 3-methyl-6-isopropyl-9-decen-l-yl acetate, a component of the California red scale pheromone. J Org Chem 45: 2229 – 2236.

    Article  CAS  Google Scholar 

  • Baker R, Rao VB (1982) Synthesis of optically pure (R,S)-dec-l-enyloxa- cyclopentan-2-one, the sex pheromone of the Japanese beetle. JCS Perkin I: 69 – 71.

    Google Scholar 

  • Benecke I, König WA (1982) Isocyanate as universal reagents for the formation of derivatives for gas chromatographic enantiomer separation. Angew Chem Int Ed Engl 21: 709.

    Article  Google Scholar 

  • Bergot BJ, Anderson RJ, Schooley DA, Henrick CA (1978) Liquid chromatographic analysis of enantiomeric purity of several terpenoid acids as their l-(l-naphthyl)ethylamide derivatives. J Chromatogr 155: 97 – 105.

    Article  CAS  Google Scholar 

  • Bierl-Leonhardt BA, Moreno DS, Schwarz M, Forgerlund J, Plimmer JR (1981) Isolation, identification and synthesis of the sex pheromone of the citrus mealybug, Planococcus citri (RISSO). Tetrahedron Lett 22: 389 – 392.

    Article  CAS  Google Scholar 

  • Bierl-Leonhardt BA, Moreno DS, Schwarz M, Forster HS, Plimmer JR, DeVilbiss ED (1980) Identification of the pheromone of the comstock mealybug. Life Sci 27: 399 – 402.

    Article  PubMed  CAS  Google Scholar 

  • Bierl-Leonhardt BA, Moreno DS, Schwarz M, Forster HS, Plimmer JR, DeVilbiss ED (1982) Isolation, identification, synthesis, and bioassay of the pheromone of the Comstock mealybug and some analogs. J Chem Ecol 8:689– 699.

    Google Scholar 

  • Birch MC, Light DM, Wood DL, Browne LE, Silverstein RM, Bergot BJ, Ohloff G, West JR, Young JC (1980) Pheromonal attraction and allomonal interruption of Ips pini in California by the two enantiomers of ipsdienol. J Chem Ecol 6: 703 – 717.

    Article  CAS  Google Scholar 

  • Blaschke G (1980) Chromatographic resolution of racemates. Angew Chem Int Ed Engl 19: 13 – 241.

    Article  Google Scholar 

  • Borden JH, Chong L, McLean JA, Slessor KN, Mori K (1976) Gnathotrichus sulcatus: Synergistic response to enantiomers of the aggregation pheromone sulcatol. Science 192: 894 – 896.

    Google Scholar 

  • Borden JH, Handley JR, McLean JA, Silverstein RM, Chong L, Slessor KN, Johnston BD, Schuler HR (1980) Enantiomer-based specificity in pheromone communication by two sympatric Gnathotrichus species. J Chem Ecol 6: 445 – 456.

    Article  Google Scholar 

  • Byström S, Hogberg H-E, Norin T (1981) Chiral synthesis of (2S, 3S, 7S)-3,7- dimethylpentadecan-2-yl acetate and propionate, potential sex pheromone components of the pine saw-fly Neodiprion sertifer. Tetrahedron 37:2249– 2254.

    Google Scholar 

  • Dale JA, Dull DL, Mosher HS (1969) α-Methoxy-α-trifluoromethylphenyl acetic acid, a versatile reagent for the determination of enantiomeric composition of alcohols and amines. J Org Chem 34: 2543 – 2549.

    Google Scholar 

  • Dale JA, Mosher HS (1973) Nuclear magnetic resonance enantiomer reagents. Configurational correlations via nuclear magnetic resonance chemical shifts of diastereomeric mandelate, O-methyl-mandelate and α-methoxy-α-tri- fluoromethylphenylacetate (MTPA) esters. J Am Chem Soc 95: 512 – 519.

    Article  CAS  Google Scholar 

  • Doolittle RE, Tumlinson JH, Proveaux AT, Heath RR (1980) Synthesis of the sex pheromone of the Japanese beetle. J Chem Ecol 6: 473 – 485.

    Article  CAS  Google Scholar 

  • Eliel EL, Otsuka S (eds) (1982) Asymmetric reactions and processes in chemistry, ACS Symposium Series 185. American Chemical Society, Washington, D.C., pp 300.

    Google Scholar 

  • Elliott WJ, Hromnak G, Fried J, Lanier GN (1979) Synthesis of multistriatin enantiomers and their action on Scolytus multistriatus. J Chem Ecol 5: 279 – 287.

    Article  CAS  Google Scholar 

  • Enders D, Eichenauer H (1979) Asymmetric synthesis of ant alarm phero- mones—α-Alkylation of acyclic ketones with almost complete asymmetric induction. Angew Chem Int Ed Engl 18: 397 – 399.

    Article  Google Scholar 

  • Francke W, Kruse K (1979) Gas chromatographic determination of enantiomeric ratios in bark beetle pheromone alcohols. EUCHEM Conference on Insect Chemistry (Öland, Sweden ), Abstracts.

    Google Scholar 

  • Fraser RR, Petit MA, Saunders JK (1971) Determination of enantiomeric purity by an optically active nuclear magnetic resonance shift reagent of wide applicability. Chem Commun 1450 – 1451.

    Google Scholar 

  • Gaudemer A (1977) Determination of optical purity and absolute configuration by nuclear magnetic resonance. In: Stereochemistry. Kagan HB (ed), Georg Thieme, Stuttgart. Vol 1, pp 117 – 136.

    Google Scholar 

  • Goering HL, Eikenberry JN, Koermer GS (1971) Tris[3-(trifluoromethyl- hydroxymethylene)-d-camphorato] europium (III). A chiral shift reagent for direct determination of enantiomeric compositions. J Am Chem Soc 93: 5913 – 5914.

    Article  CAS  Google Scholar 

  • Goering HL, Eikenberry JN, Koerner GS, Lattimer CJ (1974) Direct determination of enantiomeric compositions with optically active nuclear magnetic resonance lanthanide shift reagents. J Am Chem Soc 96: 1493 – 1501.

    Article  CAS  Google Scholar 

  • Heath RR, Doolittle RE, Sonnet PE, Tumlinson JH (1980) Sex pheromone of the white peach scale: Highly stereoselective synthesis of the stereoisomers of pentagonol propionate. J Org Chem 45: 2910 – 2912.

    Article  CAS  Google Scholar 

  • Heath RR, McLaughlin JR, Tumlinson JH, Ashley TR, Doolittle RE (1979) Identification of the white peach scale sex pheromone, an illustration of micro techniques. J Chem Ecol 5: 941 – 953.

    Article  CAS  Google Scholar 

  • Helmchen G, Nill G, Flockerzi D, Schiihler W, Youssef MSK (1979a) Extreme liquid chromatographic separation effects in the case of diastereomeric amides containing polar substituents. Angew Chem Int Ed Engl 18: 62 – 63.

    Article  Google Scholar 

  • Helmchen G, Nill G, Flockerzi D, Youssei MSK (1979b) Preparative directed resolution of enantiomeric carboxylic acids and lactones via liquid chromatography and neighboring-group assisted hydrolysis of diastereomeric amides. Angew Chem Int Ed Engl 18: 63 – 65.

    Article  Google Scholar 

  • Hintzer K, Weber R, Schurig V (1981) Synthesis of optically active 2S- and 7S-methyl-l,6-dioxaspiro [4.5] decane, the pheromone components of Paravespula vulgaris L. from S-ethyl lactate. Tetrahedron Lett 22: 55 - 58.

    Article  CAS  Google Scholar 

  • Hobbs PD, Magnus PD (1976) Studies on terpenes 4. Synthesis of optically active grandisol, the boll weevil pheromone. J Am Chem Soc 98:4594– 4600.

    Google Scholar 

  • Hoffmann RW, Ladner W, Steinbach K, Massa W, Schmidt R, Snatzke G (1981) Absolute Konfiguration von Stegobinon. Chem Ber 114: 2786 – 2801.

    Article  CAS  Google Scholar 

  • Iwaki S, Marumo S, Saito T, Yamada M, Katagiri K (1974) Synthesis and activity of optically active disparlure. J Am Chem Soc 96: 7842 – 7844.

    Article  CAS  Google Scholar 

  • Jacques J, Collet A, Wilen SH (1981) Enantiomers, Racemates and Resolutions. Wiley, New York, pp 447.

    Google Scholar 

  • Jakovac IJ, Jones JB (1979) Determination of enantiomeric purity of chiral lactones. A general method using nuclear magnetic resonance. J Org Chem 44: 2165 – 2168.

    Article  CAS  Google Scholar 

  • Kafka WA, Ohloff G, Schneider D, Vareschi E (1973) Olfactory discrimination of two enantiomers of 4-methylhexanoic acid by the migratory locust and the honeybee. J Comp Physiol 87: 277 – 284.

    Article  CAS  Google Scholar 

  • Kim YH, Balan A, Tishbee A, Gil-Av E (1982) Chiral differentiation by the P- (+)-hexahelicene-7,7’-dicarboxylic acid disodium salt. Resolution of N-2,4- dinitrophenyl-α-aminoacid esters by high performance liquid chromatography. JCS Chem Commun 1336 – 1337.

    Google Scholar 

  • Kime KA, Sievers RE (1977) A practical guide to uses of lanthanide NMR shift reagents. Aldrichim Acta 10: 54 – 62.

    CAS  Google Scholar 

  • Kitahara T, Koseki K, Mori K (1983) Synthesis and absolute configuration of phoracantholide I and J, the secretion of Phoracantha synonyma. Agric Biol Chem 47: 389 – 393.

    Article  CAS  Google Scholar 

  • Kobayashi M, Koyama T, Ogura K, Seto S, Ritter FJ, Briiggemann-Rotgans IEM (1980) Bioorganic synthesis and absolute configuration of faranal. J Am Chem Soc 102: 6602 – 6604.

    Article  CAS  Google Scholar 

  • Konig WA, Francke W, Benecke I (1982) Gas chromatographic enantiomer separation of chiral alcohols. J Chromatogr 239: 227 – 231.

    Article  Google Scholar 

  • Koppenhoefer B, Hintzer K, Weber R, Schurig V (1980) Quantitative separation of the enantiomeric pairs of the pheromone 2-ethyl-l,6-dioxaspiro [4.4] nonane by complexation chromatography on an optically active metal complex. Angew Chem Int Ed Engl 19: 471 – 472.

    Article  Google Scholar 

  • Kraemer ME, Coppel HC, Matsumura F, Wilkinson RC, Kikukawa T (1981)

    Google Scholar 

  • Field and EAG responses of the red-headed pine sawfly, Neodiprion lecontei (FITCH), to optical isomers of sawfly sex pheromones. J Chem Ecol 7:1063–1072.

    Google Scholar 

  • Kruse K, Francke W, König WA (1979) Gas chromatographic separation of chiral alcohols, amino alcohols and amines. J Chromatogr 170: 423 – 429.

    Article  CAS  Google Scholar 

  • Lanier GN, Gore WE, Pearce GT, Peacock JW, Silverstein RM (1977) Response of the European elm bark beetle, Scolytus multistriatus, to isomers and components of its pheromone. J Chem Ecol 3: 1 – 8.

    Article  CAS  Google Scholar 

  • Legrand M, Rougier MJ (1977) Application of the optical activity to stereochemical determinations. In: Stereochemistry. Kagan HB (ed), Georg Thieme, Stuttgart. Vol 2, pp 33 – 183.

    Google Scholar 

  • Leonhardt BA, Beroza M (1982) Insect pheromone technology: Chemistry and applications, ACS Symposium Series 190. American Chemical Society, Washington, D.C., pp 260.

    Google Scholar 

  • Levinson HZ, Levinson AR, Mori K (1981) Olfactory behavior and receptor potentials of two khapra beetle strains induced by enantiomers of trogo- dermal. Naturwiss 67: 480 – 481.

    Article  Google Scholar 

  • Levinson HZ, Mori K (1980) Pheromone activity of chiral isomers of trogodermal for male khapra beetle. Naturwiss 67: 148.

    Article  CAS  Google Scholar 

  • Longhurst C, Baker R, Mori K (1980) Response of the sawfly Diprion similis to chiral sex pheromones. Experientia 36: 946 – 947.

    Article  CAS  Google Scholar 

  • McKnight RC (1978) Unpublished results cited in Professor J. P. Vité’s personal communication to KM dated June 15.

    Google Scholar 

  • Mislow K, Raban M (1967) Stereoisomeric relationships of groups in molecules. In: Topics in Stereochemistry. Allinger NL, Eliel EL (eds), Interscience, New York, Vol l,pp 1 – 38.

    Chapter  Google Scholar 

  • Miyashita Y, Mori K (1981) Synthesis of both the enantiomers of (2Z, 6Z)-2,6- nonadien-4-olide, the possible male-secreted sex pheromone from a pyralid moth, Aphomia gularis SELLER. Agric Biol Chem 45: 2521 – 2526.

    Article  CAS  Google Scholar 

  • Moore BP, Brown WV (1976) The chemistry of metasternal gland secretion of the eucalypt longicorn Phoracantha synonyma. Aust J Chem 29:1365– 1374.

    Google Scholar 

  • Mori K (1973) Absolute configurations of (—)-14-methyl-cis-8-hexadecen-l-ol and methyl (—)-14-methyl-cw-8-hexadecenoate, the sex attractant of female dermestid beetle. etrahedron Lett 3869–3872.

    Google Scholar 

  • Mori K (1974a) Absolute configurations of (—)-14-methylhexadec-8-cis-en-l-ol and methyl (—)-14-methylhexadec-8-cis-enoate, the sex pheromone of female dermestid beetle. Tetrahedron 30: 3817 – 3820.

    Article  CAS  Google Scholar 

  • Mori K (1974b) Synthesis of exo-brevicomin, the pheromone of western pine beetle, to obtain optically active forms of known absolute configuration. Tetrahedron 30: 4223 – 4227.

    Article  CAS  Google Scholar 

  • Mori K (1975a) Synthesis of optically active forms of frontalin, the pheromone of Dendroctonus bark beetles. Tetrahedron 31: 1381 – 1384.

    Article  CAS  Google Scholar 

  • Mori K (1975b) Synthesis of optically active forms of sulcatol, the aggregation pheromone in the Scolytid beetle Gnathotrichus sulcatus. Tetrahedron 31: 3011 – 3012.

    Article  CAS  Google Scholar 

  • Mori K (1976a) Synthesis of optically pure (+)-trans-verbenol and its antipode, the pheromone of Dendroctonus bark beetles. Agric Biol Chem 40:415– 418.

    Google Scholar 

  • Mori K (1976b) Synthesis of optically active forms of ipsenol, the pheromone of Ips bark beetles. Tetrahedron 32: 1101 – 1106.

    Article  CAS  Google Scholar 

  • Mori K (1976c) Absolute configuration of (+)-ipsdienol, the pheromone of Ips paraconfusus Lanier, as determined by the synthesis of its (R)-(—)isomer. Tetrahedron Lett 1609 – 1612.

    Google Scholar 

  • Mori K (1976d) Synthesis of (1S, 2R, 4S, 6R)-(—)-α-multistriatin, the pheromone in the smaller European elm bark beetle, Scolytus multistriatus. Tetrahedron 32: 1979 – 1981.

    Article  CAS  Google Scholar 

  • Mori K (1977) Absolute configuration of (—)-4-methylheptan-3-ol, a pheromone of the smaller European elm bark beetle as determined by the synthesis of its (3R, 4R)-(+)- and (3S, 4R)-(+)-isomers. Tetrahedron 33: 289 – 94.

    Article  CAS  Google Scholar 

  • Mori K (1978) Synthesis of the both enantiomers of grandisol, the boll weevil pheromone. Tetrahedron 34: 915 – 920.

    Article  CAS  Google Scholar 

  • Mori K (1981) The synthesis of insect pheromones. In: The Total Synthesis of Natural Products. ApSimon J (ed), Wiley, New York, Vol 4, pp 1 – 183.

    Google Scholar 

  • Mori K, Ebata T (1981) Synthesis of optically active pheromones with an epoxy ring, (+)-disparlure and the saltmarsh caterpillar moth pheromone (Z,Z)- 3,6-cis-9,10-epoxyheneicosadiene. Tetrahedron Lett 22: 4281 – 4282.

    Article  CAS  Google Scholar 

  • Mori K, Ebata T (1983) Synthesis of enantiomers of epoxy diene pheromones of Estigmene acrea and Hyphantria cunea. Tetrahedron, In press.

    Google Scholar 

  • Mori K, Iwasawa H (1980) Preparation of the both enantiomers of threo-2- amino-3-methylhexanoic acid by enzymatic resolution and their conversion to optically active forms of threo-4-methylheptan-3-ol, a pheromone component of the smaller European elm bark beetle. Tetrahedron 36: 2209 – 2213.

    Article  CAS  Google Scholar 

  • Mori K, Ito T, Honda H, Yamamoto I (1983a) Synthesis and biological activity of optically active forms of (E)-3,7-dimethyl-2-octene-l,8-dioic acid (callosobruchusic acid), a component of the copulation release pheromone (erectin) of the azuki bean weevil. Tetrahedron 39: 2303 - 2306.

    Article  CAS  Google Scholar 

  • Mori K, Kuwahara S (1982) Synthesis of optically active forms of (E)-6-isopropyl-3,9-dimethyl-5,8-decadienyl acetate, the pheromone of the yellow scale. Tetrahedron 38: 521 – 525.

    Article  CAS  Google Scholar 

  • Mori K, Kuwahara S, Levinson HZ, Levinson AR (1982a) Synthesis and biological activity of both (E)- and (Z)-isomers of optically pure (S)-14-methyl-8- hexadecenal (trogodermal), the antipodes of the pheromone of the khapra beetle. Tetrahedron 38: 2291 – 2297.

    Article  CAS  Google Scholar 

  • Mori K, Kuwahara S, Ueda H (1983b) Synthesis of all of the four possible stereoisomers of the pheromone of flour beetles Tribolium custaneum and Tribolium confusum. Tetrahedron 39: 2439 – 2444.

    Article  CAS  Google Scholar 

  • Mori K, Masuda S, Suguro T (1981a) Stereocontrolled synthesis of all of the possible stereoisomers of 3,11-dimethylnonacosan-2-one and 29-hydroxy- 3,ll-dimethylnonacosan-2-one, the female sex pheromone of the German cockroach. Tetrahedron 37: 1329 – 1340.

    Article  CAS  Google Scholar 

  • Mori K, Mizumachi N, Matsui M (1976) Synthesis of optically pure (1S, 4S, 5S)-2-pinen-4-ol (cis-verbenol) and its antipode, the pheromone of Ips bark beetles. Agric Biol Chem 40: 1611 – 1615.

    Article  CAS  Google Scholar 

  • Mori K, Nomi H, Chuman T, Kohno M, Kato K, Noguchi M (1982c) Synthesis and absolute stereochemistry of serricornin [(4S, 6S, 7S)-4,6-dimethyl-7-hydroxy-3-nonanone], the sex pheromone of the cigarette beetle. Tetrahedron 39: 3705 – 3711.

    Article  Google Scholar 

  • Mori K, Nukada T, Ebata T (1981b) Synthesis of optically active forms of methyl (E)-2,4,5-tetradecatrienoate, the pheromone of the male dried bean beetle. Tetrahedron 37: 1343 – 1347.

    Article  CAS  Google Scholar 

  • Mori K, Sasaki M, Tamada S, Suguro T, Masuda S (1979a) Synthesis of optically active 2-ethyl-l,6-dioxaspiro [4.4] nonane (chalcogran), the principal aggregation pheromone of Pityogenes chalcographus L. Tetrahedron 35:1601- 1605.

    Google Scholar 

  • Mori K, Suguro T, Uchida M (1978a) Synthesis of optically active forms of (Z)-14-methylhexadec-8-enal, the pheromone of female dermestid beetle. Tetrahedron 34: 3119 – 3123.

    Article  CAS  Google Scholar 

  • Mori K, Takigawa T, Matsui M (1979b) Stereoselective synthesis of the both enantiomers of disparlure, the pheromone of the gypsy moth. Tetrahedron 35: 833 – 837.

    Article  CAS  Google Scholar 

  • Mori K, Takigawa T, Matsuo T (1979c) Synthesis of optically active forms of ipsdienol and ipsenol, the pheromone components of Ips bark beetles. Tetrahedron 35: 933 – 940.

    Article  CAS  Google Scholar 

  • Mori K, Tamada S (1979) Stereocontrolled synthesis of all of the four possible stereoisomers of erythro-3,7-dimethylpentadec-2-yl acetate and propionate, the sex pheromone of the pine sawflies. Tetrahedron 35: 1279 – 1284.

    Article  CAS  Google Scholar 

  • Mori K, Tamada S, Hedin PA (1978b) (—)-Grandisol, the antipode of the boll weevil pheromone, is biologically active. Naturwiss 65: 653.

    Google Scholar 

  • Mori K, Tamada S, Uchida M, Mizumachi N, Tachibana Y, Matsui M (1978c) Synthesis of optically active forms of seudenol, the pheromone of Douglas fir beetle. Tetrahedron 34: 1901 - 1905.

    Article  CAS  Google Scholar 

  • Mori K, Tanida K (1981) Synthesis of three stereoisomeric forms of 2,8-dimethyl-l,7-dioxaspiro [5.5] undecane, the main component of the cephalic secretion of Andrena wilkella. Tetrahedron 37: 3221 - 3225.

    Article  CAS  Google Scholar 

  • Mori K, Ueda H (1981a) Synthesis of optically active forms of faranal, the trail pheromone of Pharaoh’s ant. Tetrahedron Lett 22: 461 – 464.

    Article  CAS  Google Scholar 

  • Mori K, Ueda H (1981b) Synthesis of the optically active forms of 2,6-dimethyl- l,5-heptadien-3-ol acetate, the pheromone of the Comstock mealybug. Tetrahedron 37: 2581 – 2583.

    Article  CAS  Google Scholar 

  • Mori K, Ueda H (1982) Synthesis of optically active forms of faranal, the trail pheromone of Pharaoh’s ant. Tetrahedron 38: 1227 – 1233.

    Article  CAS  Google Scholar 

  • Mori K, Uematsu T, Minobe M, Yanagi K (1982b) Synthesis and absolute configuration of lineatin, the pheromone of Trypodendron lineatum. Tetrahedron Lett 23: 1921 – 1924.

    Article  CAS  Google Scholar 

  • Morrison JD (ed) (1983) Ways To Obtain Chiral Compounds and Determine Their Enantiomeric Composition. In: Asymmetric synthesis, a multivolume treatise. Academic Press, New York, Vol 1, Part 1.

    Google Scholar 

  • Newman P (1981) Optical Resolution of Acids by Chromatographic Method: Section 5, Methods for Determining Optical Purity. In: Optical resolution procedure for chemical compounds. Optical Resolution Information Center, Manhattan College, Riverdale, New York, Vol 2, Part 2, Section 3.

    Google Scholar 

  • Ohloff G, Giersch W (1977) Access to optically active ipsdienol from verbenone. Helv Chim Acta 60: 1496 – 1500.

    Article  CAS  Google Scholar 

  • Ôi N (1982) Unpublished results.

    Google Scholar 

  • Ôi N, Kitahara H, Doi T (1982b) Direct Separation of Optical Isomers of Chry- santhemic Esters by GLC with a Chiral Stationary Phase. Abstracts of papers, 43rd symposium on analytical chemistry, Yamagata, Japan.

    Google Scholar 

  • Ôi N, Kitahara H, Inda Y, Doi T (1982a) Some N-acyl derivatives of l-(a- naphthyl)ethylamine as stationary phases for the separation of optical isomers in gas chromatography. J Chromatogr 237: 297 – 302.

    Article  Google Scholar 

  • Okamoto Y, Honda S, Okamoto I, Yuki H, Murata S, Noyori R, Takaya H (1981b) Novel packing material for optical resolution: (+)-Poly (triphenylmethyl methacrylate) coated on macroporous silica gel. J Am Chem Soc 103: 6971 – 6973.

    Article  CAS  Google Scholar 

  • Okamoto Y, Okamoto I, Yuki H (1981a) Chromatographic resolution of enantiomers having aromatic group by optically active poly(triphenylmethyl methacrylate). Chem Lett 835 – 838.

    Google Scholar 

  • Parthasarathy R (1977) The determination of relative and absolute configurations of organic molecules by X-ray diffraction methods. In: Stereochemistry. Kagan HB (ed), Georg Thieme, Stuttgart, Vol 1, pp 181 – 234.

    Google Scholar 

  • Pearce GT, Gore WE, Silverstein RM (1976) Synthesis and absolute configuration of multistriatin. J Org Chem 41: 2797 – 2803.

    Article  PubMed  CAS  Google Scholar 

  • Pirkle WH (1966) The nonequivalence of physical properties of enantiomers in optically active solvents. Differences in nuclear magnetic resonance spectra I. J Am Chem Soc 88: 1837.

    Article  CAS  Google Scholar 

  • Pirkle WH (1982) Personal communication to KM dated May 21, 1982.

    Google Scholar 

  • Pirkle WH, Adams PE (1979) Broad-spectrum synthesis of enantiomerically pure lactones. 1. Synthesis of sex pheromones of the carpenter bee, rove beetle, Japanese beetle, black-tailed deer and oriental hornet. J Org Chem 44: 2169 – 2175.

    Article  CAS  Google Scholar 

  • Pirkle WH, Boeder CW (1978) Synthesis and absolute configuration of (—)- methyl (E)-2,4,5-tetradecatrienoate, the sex attractant of the male dried bean weevil. J Org Chem 43: 2091 – 2093.

    Article  CAS  Google Scholar 

  • Pirkle WH, Finn JM (1981) Chiral high-pressure liquid chromatographic stationary phases. 3. General resolution of arylalkylcarbinols. J Org Chem 46: 2935 – 2938.

    Article  CAS  Google Scholar 

  • Pirkle WH, Finn JM (1982) Preparative resolution of racemates on a chiral liquid chromatography column. J Org Chem 47: 4037 – 4040.

    Article  CAS  Google Scholar 

  • Pirkle WH, Finn JM, Schreiner JL, Hamper BC (1981) A widely useful chiral stationary phase for the high-performance liquid chromatography separation of enantiomers. J Am Chem Soc 103: 3964 – 3966.

    Article  CAS  Google Scholar 

  • Pirkle WH, House DW (1979) Chiral high-pressure liquid chromatographic stationary phases. 1. Separation of the enantiomers of sulfoxides, amines, amino acids, alcohols, hydroxy acids, lactones, and mercaptans. J Org Chem 44: 1957 – 1960.

    Article  CAS  Google Scholar 

  • Pirkle WH, House DW, Finn JM (1980) Broad-spectrum resolution of optical isomers using chiral high-performance liquid chromatographic bonded phases. J Chromatogr 192: 143 – 158.

    Article  CAS  Google Scholar 

  • Pirkle WH, Rinaldi PL (1979) Synthesis and enantiomeric purity determination of the optically active epoxide disparlure, sex pheromone of the gypsy moth. J Org Chem 44: 1025 – 1028.

    Article  CAS  Google Scholar 

  • Pirkle WH, Schreiner JL (1981) Chiral high-pressure liquid chromatographic stationary phases. 4. Separation of the enantiomers of bi-j3-naphthols and analogues. J Org Chem 46: 4988 – 4991.

    Article  CAS  Google Scholar 

  • Pirkle WH, Sikkenga DL, Pavlin MS (1977) Nuclear magnetic resonance determination of enantiomeric composition and absolute configuration of γ-lactones using chiral 2,2,2-trifluoro-l-(9-anthryl)ethanol. J Org Chem 42: 384 – 387.

    Article  CAS  Google Scholar 

  • Pirkle WH, Simmons KA (1981) Nuclear magnetic resonance determination of enantiomeric composition and absolute configuration of amines, alcohols, and thiols with α-[l-(9-anthryl)-2-2-2-trifluoroethoxy] acetic acid as a chiral derivatizing agent. J Org Chem 46: 3239 – 3246.

    Article  CAS  Google Scholar 

  • Plummer EL, Stewart TE, Byrne K, Pearce GT, Silverstein RM (1976) Determination of the enantiomeric composition of several insect pheromone alcohols. J Chem Ecol 2: 307 – 331.

    Article  CAS  Google Scholar 

  • Raban M, Mislow K (1965) The determination of optical purity by Nuclear Magnetic Resonance Spectroscopy. Tetrahedron Lett 4249 – 4253.

    Google Scholar 

  • Raban M, Mislow K (1967) Modern methods for the determination of optical purity. In: Topics in Stereochemistry. Allinger NL, Eliel EL (eds), Inter-science, New York, Vol 2, pp 199 – 230.

    Chapter  Google Scholar 

  • Ravid U, Silverstein RM, Smith LR (1978) Synthesis of the enantiomer of 4- substituted 7-lactones with known absolute configuration. Tetrahedron 34: 1449 – 1452.

    Article  CAS  Google Scholar 

  • Riley RG, Silverstein RM, Moser JC (1974) Biological responses of Atta texana to its alarm pheromone and the enantiomer of the pheromone. Science 183: 760 – 762.

    Article  PubMed  CAS  Google Scholar 

  • Roelofs W, Gieselmann M, Carde A, Tashiro H, Moreno DS, Henrick CA, Anderson RJ (1978) Identification of the California red scale sex pheromone. J Chem Ecol 4: 211 – 224.

    Article  CAS  Google Scholar 

  • Roelofs WL, Gieselmann MJ, Mori K, Moreno DS (1982) Sex pheromone chirality comparison between sibling species—California red scale and yellow scale. Naturwiss 69: 348.

    Article  Google Scholar 

  • Rossi R, Salvadori PA (1979) Synthesis of both enantiomers of 6-methyl-3- octanone, a component of the alarm pheromone of ants in the genus Crematogaster. Synthesis 209 - 210.

    Google Scholar 

  • Saucy G, Borer R, Trullinger DP, Jones JB, Lok KP (1977) Gas chromatographic analysis of ortho esters as a convenient new general method for determining the enantiomeric purities of chiral δ-lactones. J Org Chem 42: 3206 – 3208.

    Article  CAS  Google Scholar 

  • Schuler HR, Slessor KN (1977) Synthesis of enantiomers of sulcatol. Can J Chem 55: 3280 – 3287.

    Article  CAS  Google Scholar 

  • Schurig V (1980) Resolution of enantiomers and isotopic compositions by selective complexation gas chromatography on metal complexes. Chromato- graphia 13: 263 – 270.

    Article  CAS  Google Scholar 

  • Schurig V, Bürkle W (1982) Extending the scope of enantiomer resolution by complexation gas chromatography. J Am Chem Soc 104: 7573 – 7580.

    Article  CAS  Google Scholar 

  • Schurig V, Weber R (1982) Unpublished results.

    Google Scholar 

  • Schurig V, Weber R, Klimetzek D, Kohnle U, Mori K (1982) Enantiomeric composition of ‘lineatin’ in three sympatric Ambrosia beetles. Naturwiss 69: 602 – 603.

    Article  CAS  Google Scholar 

  • Schurig V, Weber R, Nicholson GJ, Oehlschlager AC, Pierce Jr H, Pierce AM, Borden JH, Ryker LC (1983) Enantiomer composition of natural exo- and endo-brevicomin by complexation gas chromatography/selected ion mass spectrometry. Naturwiss 70: 92.

    Article  CAS  Google Scholar 

  • Scott CG, Petrin MJ, McCorkle T (1976) The liquid chromatographic separation of some acyclic terpenoid acid enantiomers via diastereomer derivatization. J Chromatogr 125: 157 – 161.

    Article  CAS  Google Scholar 

  • Silverstein RM, Cassidy RF, Burkholder WL, Shapas TJ, Levinson HZ, Levinson AR, Mori K (1980) Perception by Trogoderma species of chirality and methyl branching at a site far removed from a functional group in a pheromone component. J Chem Ecol 6: 911 – 917.

    Article  CAS  Google Scholar 

  • Slessor KN, Oehlschlager AC, Johnston BD, Pierce Jr HD, Grewal SK, Wickremesinghe KG (1980) Lineatin: Regioselective synthesis and resolution leading to the chiral pheromone of Trypodendron lineatum. J Org Chem 45: 2290 – 2297.

    Article  CAS  Google Scholar 

  • Solladié G, Matloubi-Moghadam F (1982) Asymmetric synthesis of five- and six- membered lactones from chiral sulfoxides: Application to the asymmetric synthesis of insect pheromones, (R)-(+)-δ-n-hexadecanolactone and (R)- (+)-γ-n-dodecanolactone. J Org Chem 47: 91 - 94.

    Article  Google Scholar 

  • Sonnet PE, Heath RR (1982) Synthesis of (±)-10-methyl-l-dodecanol acetate, the chiral component of the smaller tea tortrix moth (Adoxophyes sp), with an option for asymmetric induction. J Chem Ecol 8: 41 - 53.

    Article  CAS  Google Scholar 

  • Stewart TE, Plummer EL, McCandless LL, West JR, Silverstein RM (1977) Determination of enantiomer composition of several bicyclic ketal insect pheromone components. J Chem Ecol 3: 27 – 43.

    Article  CAS  Google Scholar 

  • Still WC (1979) (±)-Periplanone-B. Total synthesis and structure of the sex excitant pheromone of the American cockroach. J Am Chem Soc 101: 2493 - 2495.

    Google Scholar 

  • Suguro T, Mori K (1979a) Synthesis of optically active forms of (E)-14-methyl- 8-hexadecenal (trogodermal). Agric Biol Chem 43: 409 – 410.

    Article  CAS  Google Scholar 

  • Suguro T, Mori K (1979b) Synthesis of optically active forms of 10-methyl- dodecyl acetate, a minor component of the pheromone complex of the smaller tea tortrix moth. Agric Biol Chem 43: 869 – 870.

    Article  CAS  Google Scholar 

  • Sullivan GR (1978) Chiral lanthanide shift reagent. In: Topics in Stereochemistry. Allinger NL, Eliel EL (eds), Interscience, New York, Vol 10, pp 287– 329.

    Google Scholar 

  • Tamaki Y, Noguchi H, Sugie H, Kariya A, Arai S, Ohba M, Terada T, Suguro T, Mori K (1980) Four-component synthetic sex pheromone of the smaller tea tortrix moth: Field evaluation of its potency as an attractant for male moth. Jap J Appl Ent Zool 24: 221 – 228.

    Article  CAS  Google Scholar 

  • Tanida K, Mori K (1981) Synthesis of both enantiomers of methyl 3-isopropyl-pentanoate, a volatile substance isolated from two ant species, Formica rufa L. and Formica polyctena Forst. J Chem Soc Jpn (Nippon Kagaku Kaishi) 635 – 638.

    Google Scholar 

  • Tumlinson JH (1982) The chemical basis for communication between the sexes in Heliothis virescens and other insect species. In: Les médiateurs chimiques agissant sur le comportement des insectes (les Colloques de 1’INRA, No. 7 ), Institut National de la Recherche Agronomique, Paris, pp 193 – 201.

    Google Scholar 

  • Tumlinson JH, Klein MG, Doolittle RE, Ladd TL, Proveaux AT (1977) Identification of the female Japanese beetle sex pheromone: Inhibition of male response by an enantiomer. Science 197: 789 – 792.

    Article  PubMed  CAS  Google Scholar 

  • Uematsu T, Umemura T, Mori K (1983) Synthesis of both the enantiomers of eldanolide the wing gland pheromone of the male African sugar-cane borer. Agric Biol Chem 47: 597 – 601.

    Article  CAS  Google Scholar 

  • Valentine Jr D, Chan KK, Scott CG, Johnson KK, Toth K, Saucy G (1976) Direct determinations of R/S enantiomer ratios of citronellic acid and related substances by nuclear magnetic resonance spectroscopy and high pressure liquid chromatography. J Org Chem 41: 62 – 65.

    Article  CAS  Google Scholar 

  • Vigneron JP, Méric R, Larchevêque M, Debal A, Kunesch G, Zagatti P, Gallois M (1982) Absolute configuration of eldanolide, the wing gland pheromone of the male African sugar cane borer, Eldana saccharina (Wlk.). Syntheses of its (+) and (–) enantiomers. Tetrahedron Lett 23: 5051 – 5054.

    Article  CAS  Google Scholar 

  • Vité JP, Hedden R, Mori K (1976a) Ips grandicollis: Field response to the optically pure pheromone. Naturwiss 63: 43.

    Google Scholar 

  • Vité JP, Klimetzek D, Loskant G, Hedden R, Mori K (1976b) Chirality of insect pheromones: Response interruption by inactive antipodes. Naturwiss 63: 582 – 583.

    Article  Google Scholar 

  • Vité JP, Ohloff G, Billings RF (1978) Pheromonal chirality and integrity of aggregation response in southern species of the bark beetle Ips sp. Nature (London) 272: 817 – 818.

    Article  Google Scholar 

  • Weber R, Hintzer K, Schurig V (1980) Enantiomer resolution of spiroketals. Complexation gas chromatography on an optically active metal complex. Naturwiss 67: 453 – 455.

    Article  CAS  Google Scholar 

  • Weber R, Schurig V (1981) Analytical enantiomer resolution of lineatin by complexation gas chromatography. Naturwiss 68: 330 – 331.

    Article  CAS  Google Scholar 

  • Webster FZ, Zeng X-N, Silverstein RM (1982) Following the course of resolution of carboxylic acids by 13C NMR spectrometry of amine salts. J Org Chem 47: 5225 – 5226.

    Article  CAS  Google Scholar 

  • Whitesides GM, Lewis DW (1971) The determination of enantiomeric purity using chiral lanthanide shift reagents. J Am Chem Soc 93: 5914 – 5916.

    Article  CAS  Google Scholar 

  • Wilen SH, Collet A, Jacques J (1977) Strategies in optical resolutions. Tetrahedron 33: 2725 – 2736.

    Article  CAS  Google Scholar 

  • Williams HJ, Silverstein RM, Burkholder WE, Khorramshanic A (1981) Domini- calure 1 and 2: Components of aggregation pheromone from male lesser grain borer Rhyzopertha dominica F. J Chem Ecol 7: 759 – 780.

    Article  Google Scholar 

  • Wood DL, Browne LE, Ewing B, Lindahl K, Bedard WD, Tilden PE, Mori K, Pitman GB, Hughes PR (1976) Western pine beetle: Specificity among enantiomers of male and female components of an attractant pheromone. Science 192: 896 – 898.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Yasuhara F, Kabuto K (1976) Use of shift reagent with diastereo- meric MTPA esters for determination of configuration and enantiomeric purity of secondary carbinols in 1H NMR spectroscopy. Tetrahedron 32: 1363 – 1367.

    Article  CAS  Google Scholar 

  • Yasuhara F, Yamaguchi S (1977) Use of shift reagent with MTPA derivatives in 1H NMR spectroscopy III. Determination of absolute configuration and enantiomeric purity of primary carbinols with chiral center at the C-2 position. Tetrahedron Lett 4085 – 4088.

    Google Scholar 

  • Yasuhara F, Yamaguchi S (1980) Determination of absolute configuration and enantiomeric purity of 2- and 3-hydroxycarboxylic acid esters. Tetrahedron Lett 21: 2827 – 2830.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Mori, K. (1984). The Significance of Chirality: Methods for Determining Absolute Configuration and Optical Purity of Pheromones and Related Compounds. In: Hummel, H.E., Miller, T.A. (eds) Techniques in Pheromone Research. Springer Series in Experimental Entomology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5220-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5220-7_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9743-7

  • Online ISBN: 978-1-4612-5220-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics