Thermodynamics of Mixtures of Fluids

  • I-Shih Liu
  • Ingo Müller


Since the first edition of TRUESDELL’s Rational Thermodynamics the thermodynamic theory of mixtures has been improved by the formulation of a more general entropy inequality and by its systematic exploitation through use of Lagrange multipliers.


Field Equation Entropy Production Liquid Helium Thermodynamic Process Thermodynamic Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Truesdell “Sulle basi della termomeccanica”, Accademia Nazionale dei Lincei, Rendiconti della Classe di Scienze Fisiche, Mathematiche e Naturali 22 (1957): 33.MathSciNetGoogle Scholar
  2. [2]
    I. Müller, “A thermodynamic theory of mixtures of fluids”, Archive for Rational Mechanics and Analysis 28 (1968): 1.MathSciNetADSMATHCrossRefGoogle Scholar
  3. [3]
    R. J. E. Clausius, Mechanische Wärmetheorie, 1. Band, Braunschweig, Verlag Vieweg & Sohn, 1887.Google Scholar
  4. [4]
    I. Müller, “Die Kältefunktion, eine universelle Funktion in der Thermo-dynamik viskoser wärmeleitender Flüssigkeiten”, Archive for Rational Mechanics and Analysis 40 (1971): 1.MathSciNetADSMATHCrossRefGoogle Scholar
  5. [5]
    I-Shih Liu, “Method of Lagrange multipliers for exploitation of the entropy principle”, Archive for Rational Mechanics and Analysis 46 (1972): 131.Google Scholar
  6. [6]
    I. Müller, “A new approach to thermodynamics of simple mixtures”, Zeitschrift für Naturforschung 28a (1973): 1801.ADSGoogle Scholar
  7. [7]
    I. Müller, Thermodynamics and Statistical Mechanics of Fluids and Mixtures of Fluids. Lecture Notes of the CNR Scuola Estiva della Fisica Matematica, Bari, Cassano, 1976.Google Scholar
  8. [8]
    C. Truesdell, Rational Thermodynamics, 1st edition, New York and London, McGraw-Hill, 1969.Google Scholar
  9. [9]
    J. Meixner & H. G. Reik, “Die Thermodynamik der irreversiblen Prozesse in kontinuierlichen Medien mit inneren Umwandlungenpages”, pages 417ff. of Flugge’s Handbuch der Physik, Volume III/2, Berlin etc., 1959.Google Scholar
  10. [10]
    S. R. de Groot & P. Mazur, Non-Equilibrium Thermodynamics, Amsterdam, North-Holland, 1962.Google Scholar
  11. [11]
    C. Truesdell, “Mechanical basis of diffusion”, Journal of Chemical Physics 37 (1962): 2337.ADSCrossRefGoogle Scholar
  12. [12]
    Ming-Nan Huang, Ultrasound and light scattering in a diffusing and chemically reacting binary mixture of fluids. Dissertation, The Johns Hopkins University, Baltimore, 1973.Google Scholar
  13. [13]
    I. Müller & P. Villaggio, “Conditions of stability and wave speeds for fluid mixtures”, Meccanica 11 (1976): 191.ADSMATHCrossRefGoogle Scholar
  14. [14]
    L. Tisza, Nature 141 (1938): 913.ADSCrossRefGoogle Scholar
  15. [15]
    L. D. Landau, “The theory of superfluidity of helium II”. [Soviet] Journal of Physics 5 (1941): 71.Google Scholar
  16. [16]
    W. Dreyer, On sound propagation in liquid helium II. Dissertation, TU Berlin, in preparation.Google Scholar
  17. [17]
    J. Wilks, The Properties of Liquid and Solid Helium, Oxford, Clarendon Press, 1967.Google Scholar
  18. [18]
    H. E. Hall & W. F. Vinen, “The rotation of liquid helium II. 1. Experiments on the propagation of second sound in uniformly rotating Helium II”. Proceedings of the Royal Society (London) A 238 (1956): 204.Google Scholar
  19. [19]
    H. E. Hall & W. F. Vinen, “The rotation of liquid helium II. 2. The theory of mutual friction in uniformly rotating helium II”, Proceedings of the Royal Society (London) A 238 (1956): 215.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1984

Authors and Affiliations

  • I-Shih Liu
  • Ingo Müller

There are no affiliations available

Personalised recommendations