Advertisement

Extremal Tests for Weak Convergence of Sequences and Series

  • Joseph Diestel
Part of the Graduate Texts in Mathematics book series (GTM, volume 92)

Abstract

This chapter has two theorems as foci. The first, due to the enigmatic Rainwater, states that for a bounded sequence (x n) in a Banach space X to converge weakly to the point x, it is necessary and sufficient that x*x = lim n x*x n hold for each extreme point x* of B x* . The second improves the Bessaga-Pelczynski criterion for detecting c 0’s absence; thanks to Elton, we are able to prove that in a Banach space X without a copy of c 0 inside it, any series ∑ n x n for which ∑nx*x n∣ < ∞ for each extreme point x* of B x* is unconditionally convergent.

Keywords

Banach Space Extreme Point Weak Convergence Separable Banach Space Compact Convex Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfsen, E. M. 1971. Compact Convex Sets and Boundary Integrals. Ergebnisse der Mathematik und ihrer Grenzgebiete, Volume 57. Berlin: Springer-Verlag.Google Scholar
  2. Bourgin, R. 1983. Geometric Aspects of Convex Sets with the Radon-Nikodym Property, Volume 993, Springer Lecture Notes in Mathematics. Berlin: Springer-Verlag.Google Scholar
  3. Choquet, G. 1969. Lectures on Analysis, Lecture Notes in Mathematics. New York: W. A. Benjamin.Google Scholar
  4. Edgar, G. A. 1975. A noncompact Choquet theorem. Proc. Amer. Math. Soc., 49, 354 – 358.MathSciNetMATHCrossRefGoogle Scholar
  5. Elton, J. 1981. Extremely weakly unconditionally convergent series. Israel J. Math. 40, 255 – 258.MathSciNetMATHCrossRefGoogle Scholar
  6. Fonf, V. 1979. One property of Lindenstrauss-Phelps spaces. Funct. Anal. Appl. (English Trans.), 13, 66 – 67.MathSciNetMATHGoogle Scholar
  7. Haydon, R. 1976. An extreme point criterion for separability of a dual Banach space and a hew proof of a theorem of Carson. Quart. J. Math. Oxford, 27, 379 – 385.MathSciNetMATHCrossRefGoogle Scholar
  8. Kadec, M. I. and Fonf, V. 1976. Some properties of the set of extreme points of the unit ball of a Banach space. Mat. Zametki, 20, 315 – 319.MathSciNetMATHGoogle Scholar
  9. Kelley, J. L. 1951. Note on a theorem of Krein and Milman. J. Osaka Inst. Sci. Tech., 3, 1 – 2.MathSciNetGoogle Scholar
  10. Krein, M. and Milman, D. 1940. On extreme points of regularly convex sets. Studia Math., 9, 133 – 138.MathSciNetMATHGoogle Scholar
  11. Mankiewicz, P. 1978. A remark on Edgar’s extremal integral representation theorem. Studia Math., 63, 259 – 265.MathSciNetMATHGoogle Scholar
  12. Musial, K. 1978. The weak Radon-Nikodym property in Banach spaces. Studia Math., 64, 151 – 174.MathSciNetGoogle Scholar
  13. Phelps, R. R. 1966. Lectures on Choquet’s theorem. Van Nostrand Math. Studies No. 7. Princeton: Van Nostrand.Google Scholar
  14. Rainwater, J. 1963. Weak convergence of bounded sequences. Proc. Amer. Math. Soc., 14, 999.MathSciNetMATHGoogle Scholar
  15. Rybakov, V. 1977. Some properties of measures on a normed space that has the RN property. Mat. Zametki, 21, 81 – 92.MathSciNetMATHGoogle Scholar
  16. Saab, E. 1977. Points extrémaux, séparabilité et faible K-analyticité dans les duaux d’espaces de Banach. C. R. Acad. Sci. Paris, 285, 1057 – 1060.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1984

Authors and Affiliations

  • Joseph Diestel
    • 1
  1. 1.Department of Math SciencesKent State UniversityKentUSA

Personalised recommendations