Skip to main content

Existence and Uniqueness for the Initial Value Problem Under the Hypothesis of Lipschitz

  • Chapter
Ordinary Differential Equations in Rn

Part of the book series: Applied Mathematical Sciences ((AMS,volume 39))

  • 653 Accesses

Abstract

In this chapter, we shall study initial value problems in their various aspects: uniqueness, existence, domain of definition of the solutions and qualitative properties of the solutions. We shall assume that the functions that appear on the right side of the equations belong to a special class of continuous functions, the Lipschitz functions. This restriction allows us to treat the questions at hand with a remarkable ease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. M. Alekseev, An upper bound for the perturbations of the solutions of ordinary differential equations (in Russian), Vestnik Moscov. Univ. I Mat. Mech., 2 (1961), 28–36.

    Google Scholar 

  2. A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maier, Theory of bifurcations of dynamic systems on a plane, Israel Program Scient. Translation, Jerusalem, 1971.

    Google Scholar 

  3. A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maier, Qualitative theory of second-order dynamic systems, Israel Program Scient. Translation, Jerusalem, 1973.

    Google Scholar 

  4. S. Banach, Théorie des Operations Linéaires, Chelsea, New York, 1955.

    MATH  Google Scholar 

  5. N. P. Bhatia and G. P. Szëgo, Stability Theory of Dynamical Systems, Springer-Verlag, Berlin, 1970.

    MATH  Google Scholar 

  6. A. Bielecki, Une remarque sur la méthode de Banach-Caccioppoli-Tikhonov dans la théorie des équations différentielles ordinaires, Bull. Acad. Polon. Sei. Cl., III, 4 (1956), 261–264.

    MathSciNet  MATH  Google Scholar 

  7. G. W. Bluman and J. D. Cole, Similarity Methods for Differential Equations, Springer-Verlag, Berlin, 1974.

    MATH  Google Scholar 

  8. S. P. Diliberto, A new technique for proving the existence of analytic functions in WEISS, Ordinary Differential Equations, Academic Press, New York, 1972.

    Google Scholar 

  9. J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.

    MATH  Google Scholar 

  10. N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience, New York, 1964.

    Google Scholar 

  11. J. Eisenfeld and V. Lakshmikantham. Comparison principle and nonlinear contractions in abstract Spaces, J. Math. Anal. Appl., 49 (1975), 504–511.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. W. Evans and J. A. Feroe, Successive approximations and the general uniqueness theorem, Amer. J. Math., 96 (1974), 505–510.

    Article  MathSciNet  MATH  Google Scholar 

  13. K. O. Friedrichs, Lectures on Advanced Ordinary Differential Equations, Gordon and Breach, London, 1967.

    Google Scholar 

  14. G. E. O. Giacaglia, Perturbations Methods in Nonlinear Systems, Springer-Verlag, Berlin, 1972.

    Google Scholar 

  15. P. F. Hsieh, Recent advances in the analytic theory of nonlinear ordinary differential equations with an irregular type singularity, in ANTOSIEWICZ, International Conference on Differential Equations, Academic Press, New York, 1975.

    Google Scholar 

  16. J. R. Isbell, Uniform Spaces, Amer. Math. Soc., Providence, R. I., 1964.

    Google Scholar 

  17. E. Kamke, Differentialgleichungen: Lösungsmethoden und Losungen, Vol. I, Leipzig Akademische V., Leipzig, 1942.

    Google Scholar 

  18. W. Kaplan, Analytic ordinary differential equations in the large, in HARRIS and SIBUYA, Proceedings United States-Japan Seminar on Differential Equations, Benjamin, New York, 1967.

    Google Scholar 

  19. V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, Vol. I, Academic Press, New York, 1969.

    Google Scholar 

  20. A. Lasota, Relaxation of oscillations and turbulence, in WEISS, Ordinary Differential Equations, Academic Press, New York, 1972.

    Google Scholar 

  21. R. H. Martin, Jr., Nonlinear Operators and Differential Equations in Banach Spaces, John Wiley and Sons, New York, 1976.

    MATH  Google Scholar 

  22. M. Matsuda, Integration of ordinary differential equations of the first order by quadratures, Osaka J. Math., 11 (1974), 23–36.

    MathSciNet  MATH  Google Scholar 

  23. J. Mawhin, Fredholm mappings and solutions of linear differential equations at singular points, Ann. Mat. Pure Appl. 105 (1976), 329–335.

    MathSciNet  Google Scholar 

  24. G. R. Morris, A. Feldstein and E. W. Bowen, The Phragmén-Lindelof principle and a class of functional differential equations, in WEISS, Ordinary Differential Equations, Academic Press, New York, 1972.

    Google Scholar 

  25. R. D. Nussbaum, Periodic solutions of analytic functional differential equations are analytic, Michigan Math. J., 20 (1973), 249–255.

    Article  MathSciNet  MATH  Google Scholar 

  26. B. G. Pachpatte, On some integral inequalities similar to Bellman-Bihari inequalities, J. Math. Anal. Appl., 49 (1975), 794–802.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. M. Peixoto, Dynamical Systems, Academic Press, New York, 1973.

    MATH  Google Scholar 

  28. L. S. Pontryagin, Equations Différentielles Ordinaires, MIR, Moscow, 1969.

    Google Scholar 

  29. T. G. Proctor, Periodic solutions for perturbed differential equations, J. Math. Anal. Appl., 47 (1974), 310–323.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. L. Rasmussen, Gronwall’s inequality for functions of two independent variables, J. Math. Anal. Appl., 55 (1976), 407–417.

    Article  MathSciNet  MATH  Google Scholar 

  31. K. Schmitt, Applications of variational equations to ordinary, and partial differential equations - Multiple solutions of boundary value problems, J. Diff. Eq., 17 (1975), 154–186.

    Article  MATH  Google Scholar 

  32. G. R. Sell, Topological dynamical techniques for differential and integral equations, in WEISS, Ordinary Differential Equations, Academic Press, New York, 1972.

    Google Scholar 

  33. J. Sotomayor, Smooth dependence of solutions of differential equations on initial data: a simple proof, Boletim Soc. Brasil. Mat., 4 (1973), 55–59.

    Article  MathSciNet  Google Scholar 

  34. G. Vidossich, Global convergence of successive approximations, J. Math. Anal. Appl., 45 (1974), 285–292.

    Article  MathSciNet  MATH  Google Scholar 

  35. G. Vidossich, Most of the successive approximations do converge, Math. Anal. Appl., 45 (1974), 127–131.

    Article  MathSciNet  MATH  Google Scholar 

  36. K. Yosida, Functional Analysis, Springer-Verlag, Berlin, 1971.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Piccinini, L.C., Stampacchia, G., Vidossich, G. (1984). Existence and Uniqueness for the Initial Value Problem Under the Hypothesis of Lipschitz. In: Ordinary Differential Equations in Rn . Applied Mathematical Sciences, vol 39. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5188-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5188-0_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-90723-9

  • Online ISBN: 978-1-4612-5188-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics