Selection and Microencapsulation of an “NADH-Oxidizing” Bacterium and Its Use for NAD Regeneration

  • F. Ergan
  • D. Thomas
  • T. M. S. Chang


An alternative approach to the regeneration of coenzymes is described here using immobilized microorganisms possessing “NADH-oxidase” function. Bacteria containing NADH-oxidase activity are immobilized by microencapsulation within artificial cells. In this form, the microencapsulated bacteria can recycle NADH back to NAD in the presence of molecular oxygen as an electron acceptor. The only byproduct of the recycling reaction is water. In order to perform the biological regeneration of NAD, the activity of NADH-oxidase was investigated in 13 strains of aerobic bacteria and yeast. The NADH-oxidizing bacteria Leuconostoc mesenteroides exhibited the highest activity among the microorganisms tested. The permeabilized bacteria showed 10% of their initial activity after microencapsulation. Light and electron microscopy studies of bacteria loaded microcapsules have been done. Enzymatic properties of microcapsule-immobilized bacteria were investigated in comparison with those of the free enzyme complex. Leuconostoc mesenteroides, containing NADH-oxidase, has been micro-encapsulated together with 3α-hydroxysteroid dehydrogenase (3α-HSDH) for stereospecific steroid oxidation.


Apply Biochemistry Batch Reactor Candida Tropicalis Leuconostoc Mesenteroides Artificial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chang, T. M. S., Yu, Y. T., and Grunwald, J. (1982), Enzyme Eng. 6, 451.Google Scholar
  2. 2.
    Wykes, J. R., Dunnill, P., and Lilly, M. D. (1975), Biotechnol. Bioeng. 17, 51.CrossRefGoogle Scholar
  3. 3.
    Ergan, F., Atrat, P., Dhulster, P., Gellf, G., Kim, M. N., Legoy, M. D., and Thomas, D. (1982), Z. Allgem. Mikrobiol. 22, 9, 607.CrossRefGoogle Scholar
  4. 4.
    Coughlin, R. W., Aizawa, M., Alexander, B. F., and Charles, M. (1975), Biotechnol. Bioeng. 17, 515.CrossRefGoogle Scholar
  5. 5.
    Kawai, K., and Eguchi, Y. (1975), J. Ferment. Technol. 53, 8, 588.Google Scholar
  6. 6.
    Gwak, S. H., Ota, Y., Yagi, O., and Minoda, Y. (1982), J. Ferment. Technol. 60, 3, 205.Google Scholar
  7. 7.
    Chang, T. M. S. (1964), Science 146, 3643, 524.PubMedCrossRefGoogle Scholar
  8. 8.
    Chang, T. M. S., Maclntosh, F. C., and Mason, S. G. (1966), Can. J. Physiol. Pharmacol. 44, 115.PubMedCrossRefGoogle Scholar
  9. 9.
    Chang, T. M. S. (1972), in Artificial Cells, 1st edn., Charles C Thomas, Springfield, IL, USA, p. 207.Google Scholar
  10. 10.
    Chang, T.M.S. (1977), in Biomedical Applications of Immobilized Enzymes and Proteins, vol. 1, Chang, T. M. S., ed., Plenum, New York, pp. 93–147.Google Scholar

Copyright information

© The Humana Press Inc. 1984

Authors and Affiliations

  • F. Ergan
    • 1
  • D. Thomas
    • 2
  • T. M. S. Chang
    • 1
  1. 1.Artificial Cells and Organs Research CentreMcGill UniversityMontreal, QuebecCanada
  2. 2.Laboratoire de Technologie EnzymatiqueUniversite de Technologie de CompiegneCompiegne, CedexFrance

Personalised recommendations