Studies on Skinned Fiber Preparations

  • Kaushik D. Meisheri
  • J. Casper Rüegg
  • Richard J. Paul
Part of the Contemporary Biomedicine book series (CB, volume 5)

Abstract

Smooth muscle contractility may be discussed in terms of the following basic processes (schematically shown in Fig. 1): (a) excitation of the cell membrane, (b) excitation-contraction (E-C) coupling, which includes the release of Ca2+ from internal stores and increased transmembrane Ca2+ transport resulting ultimately in an increase in the cytoplasmic free Ca2+ concentration, (c) the supply of ATP for contraction and its resynthesis by cell metabolism, and (d) the chemomechanical energy transformation with ATP hydrolysis, catalyzed by the myosin ATPase as the driving force. To these basic processes one might add for consideration the homeostatic mechanisms controlling osmotic pressure, salt concentration, pH, and so forth of the cytoplasm surrounding the contractile structures. Because of the inherently complex nature of the interactions among the above processes, experiments on intact muscle can provide only suggestive information regarding the contractile machinery itself. On the other extreme, studies of the contractile mechanism with isolated contractile proteins lack the structural integrity of the contractile and regulatory systems that could be of critical importance in the intact muscle.

Keywords

Glycerol Respiration Adenosine Vanadate Explosive 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achazi, R. K. Phosphorylation of molluscan paramyosin. Pflügers Arch. 379: 179–201, 1979.Google Scholar
  2. 2.
    Adelstein, R. S. Calmodulin and the regulation of the actin—myosin interaction in smooth muscle and nonmuscle cells. Cell 30: 349–350, 1982.PubMedGoogle Scholar
  3. 3.
    Adelstein, R. S., M. A. Conti, D. K. Hathaway, and C. B. Klee. Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3’-5’ monophosphate dependent protein kinase. J. Biol. Chem. 253: 8347–8350, 1978.PubMedGoogle Scholar
  4. 3.
    Adelstein, R. S., M. A. Conti, D. K. Hathaway, and C. B. Klee. Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3’-5’ monophosphate dependent protein kinase. J. Biol. Chem. 253: 8347–8350, 1978.PubMedGoogle Scholar
  5. 5.
    Amer, A. Mechanical characteristics of chemically skinned guinea-pig taenia coli. Pflügers Arch. 395: 277–284, 1982.Google Scholar
  6. 6.
    Baguet, F. and J. M. Gillis. The respiration of the anterior byssus retractor muscle of mytilus edulis (ABRM) after a phasic contraction. J. Physiol. (Lond.) 188: 67–82, 1967.Google Scholar
  7. 7.
    Baguet, F. and J. M. Gillis. Energy cost of tonic contraction in a lamelli-branch catch muscle. J. Physiol. (Lond.) 198: 127–143, 1968.Google Scholar
  8. 8.
    Bhalla, R. C., R. V. Sharma, and R.C. Gupta. Isolation of two myosin light-chain kinases from bovine carotid artery and their regulation by phosphorylation mediated by cyclic AMP-dependent protein kinase. Biochem J. 203: 583–592, 1982.PubMedGoogle Scholar
  9. 9.
    Bolton, T. B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev. 59: 607–718, 1979.Google Scholar
  10. 10.
    Bowen, W. J. Glycerol treated muscle as working model of contraction and diffusion of ATP through it. In: Biochemistry of Muscle Contraction. Ed. J. Gergely. Little, Brown and Company, Boston, 1964. pp 441–447.Google Scholar
  11. 11.
    Briggs, A. H. Characteristics of contraction in glycerinated uterine smooth muscle. Am. J. Physiol. 204: 739–742, 1963.PubMedGoogle Scholar
  12. 12.
    Butler, T. M. and R.E. Davies. High-energy phosphates in smooth muscle. Bohr, D. F., Somlyo, A. P., and Sparks, H. V., Jr., Handbook of Physiology, Section 2, The Cardiovascular System, Vol. II, Vascular Smooth Muscle. Bethesda: Am. Physiol. Soc. pp 237–252, 1980.Google Scholar
  13. 13.
    Butler, T. M. and M. J. Siegman. Chemical energy usage and myosin light chain phosphorylation in mammalian smooth muscle. Federation Proc. 42: 57–61, 1983.Google Scholar
  14. 14.
    Cassidy, P., P. E. Hoar, and W. G. L. Kerrick. Irreversible thiophosphorylation and activation of tension in functionally skinned rabbit ileum strips by 1351 ATPßS. J. Biol. Chem. 254: 11148–11153, 1979.PubMedGoogle Scholar
  15. 15.
    Cassidy, P., P. E. Hoar, and W. G. L. Kerrick. Inhibition of Ca2+-activated tension and myosin light chain phosphorylation in skinned smooth muscle strips by the phenothiazines. Pflügers Arch. 387: 115–120, 1980.PubMedGoogle Scholar
  16. 16.
    Cassidy, P. and W. G. L. Kerrick. Superprecipitation of gizzard actomyosin, and tension in gizzard muscle skinned fibers in the presence of nucleotides other than ATP. Biochim. Biophy. Acta. 705: 63–69, 1982.Google Scholar
  17. 17.
    Cassidy, P.S., W. G. L. Kerick, P. E. Hoar, and D. A. Malencik. Exogenous calmodulin increases Ca’ sensitivity of isometric tension activation and myosin phosphorylation in skinned smooth muscles. Pflügers Arch. 392: 115–120, 1981.PubMedGoogle Scholar
  18. 18.
    Casteels, R. and L. Raeymaekers. The action of acetylcholine and catecholamines on an intracellular calcium store in the smooth muscle cells of the guinea-pig taenia coli. J. Physiol. 294: 51–68, 1979.PubMedGoogle Scholar
  19. 19.
    Chacko, C. and A. Rosenfeld. Regulation of actin-activated ATP hydrolysis of arterial myosin. Proc. Natl. Acad. Sci. USA 79: 292–296, 1982.PubMedGoogle Scholar
  20. 19.
    Chacko, C. and A. Rosenfeld. Regulation of actin-activated ATP hydrolysis of arterial myosin. Proc. Natl. Acad. Sci. USA 79: 292–296, 1982.PubMedGoogle Scholar
  21. 21.
    Conti, M. A. and R. S. Adelstein. The relationship between calmodulin binding and phosphorylation of smooth muscle kinase by the catalytic subunit of 3’:5’ cAMP-dependent protein kinase. J. Biol. Chem. 256: 3178–3181, 1981.PubMedGoogle Scholar
  22. 22.
    Cornelius, F. Tonic contraction and the control of relaxation in a chemically skinned molluscan smooth muscle. J. Gen. Physiol. 79: 821–834, 1982.PubMedGoogle Scholar
  23. 23.
    Crosby, N. D., and J. Diamond. Effects of phenothiazines on calcium induced contractions of chemically skinned smooth muscle. Proc. West. Pharmacol. Soc. 23: 335–338, 1980.PubMedGoogle Scholar
  24. 24.
    Crow, M. T. and M. J. Kushmerick. Phosphorylation of the myosin light chains of mouse fast-twitch muscle is associated with a reduction in the actomyosin turnover rate. Science 217: 835–837, 1982.PubMedGoogle Scholar
  25. 25.
    Deth, R. and R. Casteels. A study of releasable Ca fractions in smooth muscle cells of the rabbit aorta. J. Gen. Physiol. 69: 401–416, 1977.PubMedGoogle Scholar
  26. 26.
    Diamond, J. Role of cyclic nucleotides in control of smooth muscle contraction. In: Advances in Cyclic Nucleotide Research. Eds.: George W. J. and Ignarro, L. J. Raven Press, N. Y., 1978, pp 327–340.Google Scholar
  27. 27.
    Diamond, J. and R. A. Janis. Increases in cyclic GMP levels may not mediate relaxant effects of sodium nitroprusside, verapamil, and hydralazine in rat vas deferens. Nature (Lond.) 271: 472–473, 1978.Google Scholar
  28. 28.
    Dillon, P. F., M. O. Askoy, S. P. Driska, and R. A. Murphy. Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle. Science 211: 495–497, 1981.PubMedGoogle Scholar
  29. 29.
    Donaldson, S. K. B. and W. G. L. Kerick. Characterization of the effects of Mgt+ on Cat+ and Sr2+ activated tension generation of skinned skeletal muscle fibers. J. Gen. Physiol. 66: 427–444, 1975.PubMedGoogle Scholar
  30. 30.
    Ebashi, S., Y. Nonomura, S. Nakamura, H. Nakasone, and K. Kohama. Regulatory mechanism in smooth muscle: actin-linked regulation. Federation Proc. 41: 2863–2867, 1982.Google Scholar
  31. 31.
    Endo, J., T. Kitazawa, S. Yagi, M. Iino, and Y. Kabuta. Some properties of chemically skinned smooth muscle fibers. In: Excitation-Contraction Coupling in Smooth Muscle. Eds.: Casteels, R., Godfriand, T., and Rüegg, J. C. Elsevier-North Holland, Amsterdam, 1977, pp 199–210.Google Scholar
  32. 32.
    Endo, M., T. Kitazawa, and S. Yagi. Different features of responses of the sarcoplasmic reticulum in cardiac and smooth muscles. In: Muscle Contraction, Its Regulatory Mechanisms. : Ebashi et al. Japan Sci. Soc. Press, Tokyo, 1980, pp 447–463.Google Scholar
  33. 33.
    Fabiato, A. Skinned fibers from skeletal, cardiac and smooth muscles: introduction. Federation Proc. 41: 2223–2224, 1982.Google Scholar
  34. 34.
    Fabiato, A. and F. Fabiato. Calcium release from the sarcoplasmic reticulum. Circ. Res. 40: 1119–1129, 1977.Google Scholar
  35. 35.
    Fabiato, A. and F. Fabiato. Effects of pH on the myofilaments and sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J. Physiol. (Lond.) 276: 233–255, 1978.Google Scholar
  36. 36.
    Fabiato, A. and F. Fabiato. Calculator programs for computing the composition of the solutions containins multiple metals and ligands used for experiments in skinned muscle cells. J. Physiol. (Paris) 75: 463–505, 1979.Google Scholar
  37. 37.
    Filo, R. S., D. F. Bohr, and J. C. Rüegg. Glycerinated skeletal and smooth muscle: calcium and magnesium dependence. Science 147: 1581–1583, 1965.PubMedGoogle Scholar
  38. 38.
    Gagelmann, M., U. Mrwa, G. Pfitzer, M. Troschka, C. Obst, R. Herrmann, and J. C. Rüegg. Comparison of force and myosin light chain phosphorylation in skinned smooth muscle fibers. J. Muscle Res. and Cell Motility, 3: 478, 1982.Google Scholar
  39. 39.
    Gardner, J. P. and J. DiSalvo. Temporal relations between isometric force and myosin light chain (MLC) phosphorylation in skinned porcine carotid arteries. Federation Proc. 42: 736 (Abstract), 1983.Google Scholar
  40. 40.
    Gordon, A. R. Contraction of detergent-treated smooth muscle. Proc. Natl. Acad. Sci. USA 75: 3527–3530, 1978.PubMedGoogle Scholar
  41. 41.
    Gratecos, D. and E. H. Fischer. Adenosine 5’-O(3-thiotriphosphate) in the control of phosphorylase activity. Biochem. Biophys. Res. Comm. 58: 960–967, 1974.PubMedGoogle Scholar
  42. 42.
    Guth, K. and J. Junge. Low CaZ+ impedes cross-bridge detachment in chemically skinned taenia coli. Nature 300: 775–776, 1982.PubMedGoogle Scholar
  43. 43.
    Guth, K., M. Gagelmann, and J. C. Rüegg. Skinned smooth muscle: time-course of force and ATPase activity during contraction cycle. Experientia 40: 174–176, 1984.PubMedGoogle Scholar
  44. 44.
    Haeusler, G., J. G. Richards, and S. Thorens. Noradrenaline contractions in rabbit mesenteric arteries skinned with saponin. J. Physiol. (Lond.) 321: 537–556, 1981.Google Scholar
  45. 45.
    Hartshorne, D. and U. Mrwa. Regulation of smooth muscle actomyosin. Blood Vessels. 19: 1–18, 1982.PubMedGoogle Scholar
  46. 46.
    Hasselbach, W. and O. Ledermair. Der Kontraktionzyklus der isolierten kontraktilen struckturen der Uterusmuskulatur and seine besonderheiten. Arch. Ges. Physiol. 267: 532–542, 1958.Google Scholar
  47. 47.
    Hellstrand, P. and A. Amer. Quantitative analysis of ATP turnover in relation to CaZ+-activated tension in chemically skinned guinea pig taenia coli. Biophys. J. 41: 247a (abstract), 1983.Google Scholar
  48. 48.
    Hellstrand, P., B. Johansson, and A. Ringberg. Influence of extracellular calcium on isometric force and velocity of shortening in depolarized venous smooth muscle. Acta Physiol. Scand. 84: 528–537, 1972.PubMedGoogle Scholar
  49. 49.
    Hellstrand, P. G. and R. J. Paul. Vascular smooth muscle: relations between energy metabolism and mechanics. In: Vascular Smooth Muscle: Metabolic, Ionic and Contractile Mechanisms. Eds.: Crass, M. F. III and Barnes, C. D. Academic Press, New York, 1982, pp 1–36.Google Scholar
  50. 50.
    Hidaka, H., M. Naka, and T. Yamaki. Effect of novel specific myosin light chain kinase inhibitors on CaZ+-activated Mg2’ATPase of chicken gizzard actomyosin. Biochem. Biophys. Res. Commun. 90: 694–699, 1979.PubMedGoogle Scholar
  51. 51.
    Hoar, P. E., W. G. L. Kerrick, and P. S. Cassidy. Chicken gizzard: relation between calcium-activated phosphorylation and contraction. Science 204: 503–506, 1979.PubMedGoogle Scholar
  52. 52.
    Huxley, A. F. and R. M. Simmons. Proposed mechanism of force generation in striated muscle. Nature (Land.) 233: 533–538, 1971.Google Scholar
  53. 53.
    Iino, M. Tension responses of chemically skinned fiber bundles of the guinea-pig taenia coli under varied ionic environments. J. Physiol. (Lond.). 320: 449–467, 1981.Google Scholar
  54. 54.
    Itoh, T., H. Izumi, and H. Kuriyama. Mechanisms of relaxation induced by activation of ß-adrenoceptors in smooth muscle cells of the guinea pig mesenteric artery. J. Physiol. (Lond.). 326: 475–593, 1982a.Google Scholar
  55. 55.
    Itoh, T., M. Kajiware, K. Kitamura, and H. Kuriyama. Roles of stored calcium on the mechanical response evoked in smooth muscle cells of the porcine coronary artery. J. Physiol. (Lond.). 322: 107–125, 1982b.Google Scholar
  56. 56.
    Itoh, T., H. Suzuki, and H. Kuriyama. Effects of sodium depletion on contractions evoked in intact and skinned muscles of the guinea-pig mesenteric artery. Jap. J. Physiol. 31: 831–847, 1981.Google Scholar
  57. 57.
    Jewell, B. R. The nature of phasic and tonic responses of the anterior byssus retractor muscle of Mytilus. J. Physiol. (Lond.). 149: 154–177, 1959.Google Scholar
  58. 58.
    Julian, F. J. and R. L. Moss. Effects of calcium and ionic strength on shortening velocity and tension development in frog skinned muscle fibres. J. Physiol. (Lond.). 311: 179–199, 1981.Google Scholar
  59. 59.
    Kerrick, W. G. L. Myosin light chain kinase in skinned fibers. In: Calcium and Cell Function, Vol. III. Academic Press, Inc., N. Y., 1980, pp 279–295.Google Scholar
  60. 59.
    Kerrick, W. G. L. Myosin light chain kinase in skinned fibers. In: Calcium and Cell Function, Vol. III. Academic Press, Inc., N. Y., 1980, pp 279–295.Google Scholar
  61. 61.
    Kerrick, W. G. L. and P. E. Hoar. Inhibition of smooth muscle tension by cyclic AMP-dependent protein kinase. Nature 292: 253–255, 1981.PubMedGoogle Scholar
  62. 62.
    Kerrick, W. G. L., P. E. Hoar, and P. S. Cassidy. Ca2’activated tension: the role of myosin light chain phosphorylation. Fed. Proc. 39: 1558–1563, 1980.PubMedGoogle Scholar
  63. 63.
    Kramer, G. L. and J. G. Hardman. Cyclic nucleotides and blood vessel contraction. In: Handbook of Physiology, Vol. II, Vascular Smooth Muscle. Eds.: Bohr, D. F., Somylo, A. P., and Sparks, H. V. Jr. Amer. Physiol. Soc., 1980, pp 179–200.Google Scholar
  64. 64.
    Kukovetz, W. R., S. Holzmann, A. Wurm, and G. Poch. Evidence for cyclic GMP-mediated relaxant effects of nitro-compounds in coronary smooth muscle. Arch. Pharmacol. 310: 129–138, 1979.Google Scholar
  65. 65.
    Kushmerick, M. J. and M. T. Crow. Regulation of energetics and mechanics by myosin light chain phosphorylation in fast-twitch skeletal muscle. Federation Proc. 42: 14–20, 1983.Google Scholar
  66. 66.
    Levin, R. M. and B. Weiss. Selective binding of antipsychotics and other psychoactive agents to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. J. Pharmac. Exp. Ther. 203: 454 459, 1979.Google Scholar
  67. 67.
    Mannherz, H. ATP-spaltung and ATP-diffusion in oscillierenden extrahierten muskelfasern. Pflügers Arch. 303: 230–248, 1968.PubMedGoogle Scholar
  68. 68.
    Marston, S. B., R.M. Treven, M. Walters. Calcium ion-regulated thin filaments from vascular smooth muscle. Biochem. J. 185: 355–365, 1980.PubMedGoogle Scholar
  69. 69.
    Marston, S. B. The regulation of smooth muscle contractile proteins. Prog. Biophys. Molec. Biol. 41: 1–1, 1982.Google Scholar
  70. 70.
    Meisheri, K.D., and J. C. Ruegg. Dependence of cyclic-AMP induced relaxation on Ca’ and calmodulin in skinned smooth muscle of guinea pig taenia coli. Pflügers Arch. 399: 315–320, 1983.PubMedGoogle Scholar
  71. 71.
    Meisheri, K. D. and C. van Breemen. Effects of ß-adrenergic stimulation on calcium movements in rabbit aortic smooth muscle: relationship with cyclic AMP. J. Physiol. (Lond.) 331: 429–441, 1982.Google Scholar
  72. 72.
    Merkel, L., K. D. Meisheri, and G. Pfitzer. The variable relation between myosin light chain phsophorylation and actin-activated ATPase activity in chicken gizzard smooth muscle: modulation by tropomyosin. Eur. J. Biochem. 183: 429–434, 1984.Google Scholar
  73. 73.
    Morgan, J. P. and K. G. Morgan. Vascular smooth muscle: the first recorded Ca2+ transients. Pflügers Arch. 395: 75–77, 1982.PubMedGoogle Scholar
  74. 74.
    Mrwa, U., I. Achtig, and J. C. Rüegg. Influences of calcium concentration and pH on the tension development and ATPase activity of the arterial actomyosin contractile system. Blood Vessels 11: 277–286, 1974.PubMedGoogle Scholar
  75. 75.
    Mrwa, U., M. Troschka, and J. C. Ruegg. Cyclic AMP-dependent inhibition of smooth muscle actomyosin. FEBS Lett. 107: 371–373, 1979.PubMedGoogle Scholar
  76. 76.
    Mueller, E. and C. van Breemen. Role of intracellular Ca’ sequestration in ß-adrenergic relaxation of smooth muscle. Nature (Lond.) 281: 682–683, 1979.Google Scholar
  77. 77.
    Murphy, R. A., M. O. Aksoy, P. F. Dillon, W. T. Gerthoffer, and K. E. Kamm. The role of myosin light chain phosphorylation in regulation of the cross-bridge cycle. Federation Proc. 42: 51–56, 1983.Google Scholar
  78. 78.
    Murphy, R. A., S. P. Driska, and D. M. Cohen. Variations in actin to myosin ratios and cellular force generation of vertebrate smooth muscles. In: Excitation—Contraction Coupling in Smooth Muscle. Eds. Casteels et al. Elsevier-North Holland, Amsterdam, 1977, pp 417–424.Google Scholar
  79. 79.
    Natori, R. Skinned fiber, past and present. In: Muscle Contraction, Its Regulatory Mechanisms. Ebashi et al. Japan Sci. Soc. Press, Tokyo, 1980, pp 19–29.Google Scholar
  80. 80.
    Paul, R. J. Smooth muscle: mechanochemical energy conversion, relations between metabolism and contractility. In: Physiology of the Gastrointestinal Tract. Johnson, L. R. et al., 1981, pp 269–288.Google Scholar
  81. 81.
    Paul, R. J. Coordination of metabolism and contractility in vascular smooth muscle. Federation Proc. 42: 62–66, 1983.Google Scholar
  82. 82.
    Paul, R. J., G. Doerman, C. Zeugner, and J. C. Rüegg. Dependence of unloaded shortening velocity (V15) on Ca’, calmodulin and contraction duration in “chemically skinned” smooth muscle. Circ. Res. 53: 342–351, 1983.PubMedGoogle Scholar
  83. 83.
    Persechini, A. and D. J. Hartshorne. Cooperative behavior of smooth muscle myosin. Federation Proc. 41: 2868–2872, 1982.Google Scholar
  84. 84.
    Peterson, J. W. Relation of stiffness, energy metabolism and isometric tension in vascular smooth muscle. In: Mechanisms of Vasodilation. Eds.: Vanhoutte, P. M. and Leusen, I. Karger, Basel, 1978, pp 79–88.Google Scholar
  85. 85.
    Peterson, J. W. Vanadate ion inhibits actomyosin interaction in chemically skinned vascular smooth muscle. Biochem. Biophy. Res. Comm. 95: 1846–1853, 1980.Google Scholar
  86. 86.
    Peterson, J. W. Rate limiting steps in the tension development of freeze glycerinated vascular smooth muscle. J. Gen. Physiol. 79: 437–452, 1982.PubMedGoogle Scholar
  87. 87.
    Pfitzer, G., J. W. Peterson, and J. C. Rüegg. Length dependence of calcium-activated isometric force and immediate stiffness in living and glycerol extracted vascular smooth muscle. Pflüegers Arch. 394: 174–181, 1982a.Google Scholar
  88. 88.
    Pfitzer, G. and J. C. Rüegg. Molluscan catch muscle: regulation and mechanics in living and skinned anterior byssus retractor muscle of Mytilus edulis. J. Comp. Physiol. 174: 137–142, 1982b.Google Scholar
  89. 89.
    Pfitzer, G., J. C. Rüegg, V. Flockerzi, and F. Hofmann. cGMPdependent protein kinase decreases calcium sensitivity of skinned cardiac fibers. FEBS Lett. 149: 171–175, 1982c.Google Scholar
  90. 90.
    Podolsky, R. J. and L. E. Teichholz. The relation between calcium and contraction kinetics is skinned muscle fibers. J. Physiol. (Lond.). 211: 19–35, 1970.Google Scholar
  91. 91.
    Portzehl, H., P. C. Caldwell, and J. C. Rüegg. The dependence of contraction and relaxation of muscle fibers from the crab Maia squinado on the internal concentration of free calcium ions. Biochim. Biophy. Acta. 79: 581–591, 1964.Google Scholar
  92. 92.
    Rüegg, J. C. Smooth muscle tone. Physiol. Rev. 51: 201–248, 1971.PubMedGoogle Scholar
  93. 93.
    Rüegg, J. C., J. diSalvo, and R. J. Paul. Soluble relaxation factor from vascular smooth muscle: a myosin light chain phosphatase. Biochem. Biophy. Res. Comm. 106: 1126–1133, 1982.Google Scholar
  94. 93.
    Rüegg, J. C., J. diSalvo, and R. J. Paul. Soluble relaxation factor from vascular smooth muscle: a myosin light chain phosphatase. Biochem. Biophy. Res. Comm. 106: 1126–1133, 1982.Google Scholar
  95. 95.
    Rüegg, J. C. and R. J. Paul. Vascular smooth muscle: calmodulin and cyclic AMP dependent protein kinase alter calcium sensitivity in porcine carotid skinned fibers. Circ. Res. 50: 394–399, 1982.PubMedGoogle Scholar
  96. 96.
    Rüegg, J. C., M. P. Sparrow, and U. Mrwa. Cyclic AMP mediated relaxation of chemically skinned fibers of smooth muscle. Pflügers Arch. 390: 198–201, 1981.PubMedGoogle Scholar
  97. 96.
    Rüegg, J. C., M. P. Sparrow, and U. Mrwa. Cyclic AMP mediated relaxation of chemically skinned fibers of smooth muscle. Pflügers Arch. 390: 198–201, 1981.PubMedGoogle Scholar
  98. 98.
    Rüegg, J. C. and H. H. Weber. Kontraktionszyklus and sperrtonus. In: Perspectives in Biology. Eds.: Cori, C. F., Fogilai, V. G., Leloir, L. F. and Ochoa, S. Elseiver, Amsterdam, 1963, pp 301–320.Google Scholar
  99. 99.
    Saida, K. Intracellular Ca release in skinned smooth mucle. J. Gen. Physiol. 80: 191–202, 1982.PubMedGoogle Scholar
  100. 100.
    Saida, K. and Y. Nonomura. Characteristics of Cat+ and Mgt+ induced tension development in chemically skinned smooth muscle fibers. J. Gen. Physiol. 72: 1–14, 1978.PubMedGoogle Scholar
  101. 101.
    Schädler, M. Proportionale aktivierung von ATPase aktivität and kontraktions-spannung durch calciumionen in isolierten kontraktilen strukturen. Pflügers Arch. ges. Physiol. 296: 70–90, 1967.Google Scholar
  102. 102.
    Schneider, M., M. Sparrow, and J. C. Rüegg. Inorganic phosphate promotes relaxation in chemically skinned smooth muscle of guinea-pig taenia coli. Experientia 37: 980–982, 1981.PubMedGoogle Scholar
  103. 103.
    Schultz, K. D., E. Bohme, V. A. W. Kreye, and G. Schultz. Relaxation of hormonally stimulated smooth muscle tissues by the 8-bromo derivative of cyclic GMP. N.S. Arch. Pharmacol. 306: 1–9, 1979.Google Scholar
  104. 104.
    Schumacher, T. Zum mechanismus der ökonomischen haltleistung eines glatten muskels (Byssus retractor anterior, Mytilus edulis). Pflügers Arch. 331: 77–89, 1972.PubMedGoogle Scholar
  105. 105.
    Sherry, J. M. F., A. Gorecka, M. O. Aksoy, R. Dabrowska, and D. J. Hartshorne. Roles of calcium and phosphorylation in the regulation of the activity of gizzard myosin. Biochemistry, N. Y. 17: 4411–4418, 1978.PubMedGoogle Scholar
  106. 106.
    Siegman, M. J., T. M. Butler, S. U. Mooers, and R. E. Davies. Calcium-dependent resistance to stretch and stress relaxation in resting smooth muscles. Am. J. Physiol. 231: 1501–1508, 1976.PubMedGoogle Scholar
  107. 107.
    Siegman, M. J., T. M. Butler, S.U. Moores, and R. E. Davies. Chemical energetics force development, force maintenance, and relaxation in mammalian smooth muscle. J. Gen. Physiol. 76: 609–629, 1980.PubMedGoogle Scholar
  108. 108.
    Silver, P. J. and J. DiSalvo. Adenosine 3’:5’-monophosphate mediated inhibition of myosin light chain phosphorylation in bovine aortic actomyosin. J. Biol. Chem. 254: 9951–9954, 1979.PubMedGoogle Scholar
  109. 109.
    Silver, P. J., M. J. Holroyde, R. J. Solaro, and J. DiSalvo. Cat+, calmodulin, and cyclic AMP-dependent modulation of actin-myosin interactions in aorta. Biochim. Biophy. Acta. 674: 65–70, 1981.Google Scholar
  110. 110.
    Sobue, K., K. Morimoto, M. Inui, K. Kanda, and S. Kakiuchi. Control of actin-myosin interaction of gizzard smooth muscle by calmodulinand caldesmon-linked flip-flop mechanism. Biomedical Res. 3: 188–196, 1982.Google Scholar
  111. 111.
    Solaro, H. J., J. DiSalvo, and R. J. Paul. Coordination of metabolism and contractility by phosphorylation in cardiac, skeletal, and smooth muscle: introduction. Federation Proc. 42: 62–66, 1983.Google Scholar
  112. 112.
    Somlyo, A. P., A. V. Somlyo, H. Shuman, and M. Endo. Calcium and monovalent ions in smooth muscle. Federation Proc. 41: 2883–2890, 1982.Google Scholar
  113. 113.
    Sparrow, M. P., U. Mrwa, F. Hofmann, and J. C. Rüegg. Calmodulin is essential for smooth muscle contraction. FEBS Lett. 125: 141–145, 1981.PubMedGoogle Scholar
  114. 114.
    Sparrow, M. P. G. Pfitzer, M. Gagelmann, and J. C. Rüegg. Effect of calmodulin, Cat+, and cAMP protein kinase on skinned trachael smooth muscle. Am. J. Physiol. 246: 308–314, 1984.Google Scholar
  115. 115.
    Spedding, M. Direct inhibitory effects of some calcium antagonists and trifluoroperazine on the contractile proteins in smooth muscle. Br. J. Pharmacol. 79: 225–231, 1983.PubMedGoogle Scholar
  116. 116.
    Szent-Györgyi, A. Free energy relations and contraction of actomyosin. Biol. Bull. (Woods Hole). 96: 140–161, 1949.Google Scholar
  117. 117.
    Tsien, R. Y. and T. J. Rink. Neutral carrier ion-selective micro-electrodes for measurement of intracellular free calcium. Biochim. Biophy. Acta. 599: 623–638, 1980.Google Scholar
  118. 118.
    Twarog, B. M. Responses of a molluscan smooth muscle to acetylcholine and 5-hydroxytryptamine. J. Cellular Comp. Physiol. 44: 141–164, 1954.Google Scholar
  119. 119.
    Ulbrecht, G., and M. Ulbrecht. Der isolierte arbeitscyclus glatter muskulatur. Zeitschrift für Naturforschung. 7: 434–443, 1952.Google Scholar
  120. 120.
    van Breeman. C. Calcium switch in vertebrate smooth muscle. Federation Proc. 41: 2863–2904, 1982.Google Scholar
  121. 121.
    Walsh, M. P., R. Bridenbaugh, D. J. Hartshorne, and W. G. L. Kerrick. Phosphorylation-dependent activated tension in skinned gizzard muscle fibers in the absence of Ca’. J. Biol. Chem. 257: 5987–5990, 1982.PubMedGoogle Scholar
  122. 122.
    Walsh, M. P., R. Bridenbaugh, W. G. L. Kerrick, and D. J. Hartshorne. Gizzard Ca2’independent myosin light chain kinase: evidence in favor of the phosphorylation theory. Federation Proc. 42: 45–50, 1983.Google Scholar
  123. 123.
    Walsh, M. P., R. Dabrowska, S. Hinkins, and D. J. Hartshorne. Calcium-independent myosin light chain kinase of smooth muscle. Preparation by limited chymotryptic digestion of the calcium ion dependent enzyme, purification and characterization. Biochemistry 21: 1919–1925, 1982a.Google Scholar
  124. 124.
    Winegrad, S. Studies of cardiac muscle with a high permeability to calcium produced by treatment with ethylenediaminetetraacetic acid. J. Gen. Physiol. 58: 71–93, 1971.PubMedGoogle Scholar
  125. 125.
    Yabu, H., I. Uchida, and E. Miyazaki. Participation of native tropomyosin in the ATP-contraction of an intestinal glycerinated muscle bundle. Jap. J. Physiol. 21: 465–473, 1971.Google Scholar
  126. 126.
    Yamamoto, T. and J. W. Herzig. Series elastic properties of skinned muscle fibres in contraction and rigor. Pflügers Arch. 373: 21–24, 1978.PubMedGoogle Scholar

Copyright information

© The Humana Press Inc. 1985

Authors and Affiliations

  • Kaushik D. Meisheri
  • J. Casper Rüegg
  • Richard J. Paul

There are no affiliations available

Personalised recommendations