Skip to main content

Developments in the Simulation of Compressible Inviscid and Viscous Flow on Supercomputers

  • Chapter
Progress and Supercomputing in Computational Fluid Dynamics

Part of the book series: Progress in Scientific Computing ((PSC,volume 6))

Abstract

The near term availability of scientific supercomputers will soon permit routine simulation of three dimensional compressible flow about relatively complex configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beam, R. M. and Warming, R. F., An Implicit Finite - Difference Algorithm for Hyperbolic Systems in Conservation - Law - Form, J. Comp. Phys. 22 (Sept. 1976,), p. 87–110.

    Article  Google Scholar 

  2. Warming, R. F. and Beam, R. M., On the Construction and Application of Implicit Factored Schemes for Conservation Laws, Symposium of CFD, New York, 11 (April 16–17, 1977, SIAM-AMS Proceedings).

    Google Scholar 

  3. Steger, J. L., Implicit Finite Difference Simulation of Flow About Arbitrary Two Dimensional Geometries, AIAA J. 16, No. 7 (July 1978).

    Article  Google Scholar 

  4. Pulliam, T. H. and Steger, J. L., On Implicit Finite Difference Simulations of Three Dimensional Flows, AIAA J. 18 (Feb. 1980).

    Google Scholar 

  5. Pulliam, T. H., Euler and Thin Layer Navier Stokes Codes: ARCED, ARCED, Notes for Computational Fluid Dynamics User’s Workshop, The University of Tennessee Space Institute, Tullahoma, Tenn. (March 12–16, 1984).

    Google Scholar 

  6. Pulliam, T. H. and Steger, J. L., Recent Inprovements in Efficiency, Accuracy, and Convergence of an. Implicit Approximate Factorization Algorithm, AIAA Paper 85–0360 (Jan. 1985).

    Google Scholar 

  7. Viviand, H., Conservative Forms of Gas Dynamics Equations, La Recherche Aerospatiale 1 (1978).

    Google Scholar 

  8. Thomas, P. D. and Lombard, C. K., Geometric Conservation Law and Its Application to Flow Computations on Moving Grids, AIAA Journal 17 (1979).

    Google Scholar 

  9. Steger, J. L., Pulliam, T. H. and Chima, R. V., An Implicit Finite Difference Code for Inviscid and Viscous Cascade Flow, AIAA paper 80–1427 (1980).

    Google Scholar 

  10. Pulliam, T. H., Characteristic Boundary Conditions for the Euler Equations, NASA Publication 2201, Numerical Boundary Condition Procedures (Oct. 1980).

    Google Scholar 

  11. Chakravarthy, Euler Equations - Implicit Schemes and Implicit Boundary Conditions, AIAA 82–0228 (Jan. 11–14, 1982).

    Google Scholar 

  12. Schiff, L. B. and Steger, J. L., Numerical Simulation of Steady Supersonic Viscous Flow, AIAA Journal 18 (Dec. 1980).

    Google Scholar 

  13. Nicolet, W. E., Shanks, S., Srinivasan, G. and Steger, J. L., Flowfield Predictions About Lifting Entry Vehicles, AIAA Paper 82–0026 (Jan. 11–14, 1982).

    Google Scholar 

  14. Lomax, H. and Pulliam, T. H., A Fully Implicit Factored Code for Computing Three - Dimensional Flows on the ILLIAC IV, Parallel Computations, G. Rodrigue, Ed. Academic Press, New York (1982).

    Google Scholar 

  15. Pulliam, T. H. and Chaussee, D. S., A Diagonal Form of an Implicit Approximate - Factorization Algorithm, J. Comp. Phys. 39, no. 2 (Feb. 1981), p. 347.

    Article  Google Scholar 

  16. Chaussee, D. S. and Pulliam, T. H., A Diagonal Form of an Implicit Approximate Factorization Algorithm with Application to a Two Dimensional Inlet, AIAA J. 19, no. 2 (Feb. 1981), p. 153.

    Article  Google Scholar 

  17. Barth, T. J. and Steger, J. L., An Efficient Approximate Factorization Implicit Scheme for the Equations of Gasdynamics, NASA TM 85957 (June 1984).

    Google Scholar 

  18. Eberhardt, D. S., A Study of Multiple Grid Problems on Concurrent Processing Computers, Stanford University Dissertation, Department of Aeronautics and Astronautics, Stanford, CA. (Sept., 1984).

    Google Scholar 

  19. Reddy, K. C., Pseudospectral Approximation in a Three - Dimensional Navier - Stokes Code, AIAA J. 21, no. 8 (Aug. 1983).

    Google Scholar 

  20. Yee, H. C., Warming, R. F. and Harten, A., Implicit Total Variation Diminishing (TVD) Schemes for Steady - State Calculations, NASA TM 84342 (March 1983).

    Google Scholar 

  21. Chow, L. J., Pulliam, T. H. and Steger J. L., A General Perturbation Approach for the Equations of Fluid Dynamics, AIAA Paper 83–1903 (July 13–15, 1983).

    Google Scholar 

  22. Anderson, W. K., Thomas, J. L. and Rumsey, C. L., Application of Thin Layer Navier - Stokes Equations Near Maximum Lift, AIAA Paper 84–0049 (Jan. 1984).

    Google Scholar 

  23. Barth, T. J., Pulliam, T. H. and Buning, P., Navier - Stokes Computations for Exotic Airfoils, AIAA Paper 85–0109 (Jan. 1985).

    Google Scholar 

  24. Barton, J. T. and Pulliam, T. H., Airfoil Computations at High Angles of Attack, Inviscid and Viscous Phenomena, AIAA Paper 84–0524 (1984).

    Google Scholar 

  25. Srinivasan, G. R., McCroskey, W. J. and Kutler P., Numerical Simulation of the Interaction of a Vortex with Stationary Airfoil in Transonic Flow, AIAA Paper 84–0254 (Jan. 1984).

    Google Scholar 

  26. Nietubicz, C. J., Navier Stokes Computations for Conventional and Hollow Projectile Shapes at Transonic Velocities, AIAA Paper 81–1262 (June 1981).

    Google Scholar 

  27. Sahu, J., Nietubicz, C. J. and Steger, J. L., Numerical Computation of Base Flow for a Projectile at Transonic Speeds, AIAA 82–1358 (Aug. 9–11, 1982).

    Google Scholar 

  28. Kutler, P., Pedelty, J. A. and Pulliam, T. H., Supersonic Flow over Three - Dimensional Ablated Nosetips Using an Unsteady Implicit Numerical Procedure, AIAA Paper 80–0063 (1980).

    Google Scholar 

  29. Mansour, N. N., Numerical Simulation of the Tip Vortex Off a Low - Aspect Ratio Wing at Transonic Speed, AIAA Paper 84–0522 (Jan. 1984).

    Google Scholar 

  30. Diewert, G. S., Topological Analysis of Computed Three -Dimensional Viscous Flow Fields, In `Recent Contributions to Fluid Mechanics’, W. Haase, ed. Springer-Verlag, Berlin (1982).

    Google Scholar 

  31. Chaussee, D. S., Rizk, Y. M. and Buning, P. G., Viscous Computation of a Space Shuttle Flow Field, NASA TM 85977 (June 1984).

    Google Scholar 

  32. Baldwin, B. S. and Lomax, H., Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows, AIAA Paper 78–257 (Jan. 1978).

    Google Scholar 

  33. Steger, J. L. and Warming, R. F., Flux Vector Splitting of the Inviscid Gasdynamics Equations with Applications to Finite Difference Methods, J. of Comp. Physics 40 (1981).

    Google Scholar 

  34. Buning, P. G., Computation of Inviscid Transonic Flow Using Flux Vector Splitting in Generalized Coordinates, Stanford University Dissertation, Department of Aeronautics and Astronautics, Stanford, CA (1983).

    Google Scholar 

  35. Anderson, W. K., Thomas, J. L. and Van Leer, B., A Comparison of Finite Volume Flux Vector Splittings for the Euler Equations, AIAA Paper 85–0122 (Jan. 1985).

    Google Scholar 

  36. Chakravarthy, S. R. and Osher, S., Numerical Experiments with the Osher Upwind Scheme for the Euler Equations, AIAA Paper 82–0975 (June 1982).

    Google Scholar 

  37. Chakravarthy, S. R. and Osher, S., High Resolution Applications of the Osher Upwind Scheme for the Euler Equations, AIAA Paper 83–1943 (1983).

    Google Scholar 

  38. Clarke, D. K., Hassan, H. A. and Salas, M. D., Euler Calculations for Multielement Airfoils Using Cartesian Grids, AL4A Paper 85–0291 (Jan. 1985).

    Google Scholar 

  39. Lasinski, T. A., et. al., Computation of the Steady Viscous Flow Over a Tri-Element Augmenter Wing Airfoil„ AIAA Paper 82–0021 (Jan. 1982).

    Google Scholar 

  40. Rai, M. M., A Conservative Treatment of Zonal Boundaries for Euler Equation Calculations, AIAA Paper 84–0164 (1984).

    Google Scholar 

  41. Hessenius, K. A. and Rai, M. M., Applications of a Conservative Zonal Scheme to Tansient and Geometrically Complex Problems, AIAA Paper 84–1532 (June 1984).

    Google Scholar 

  42. Atta, E. H. and Vadyak, T., A Grid Interfacing Zonal Algorithm for Three Dimensional Transonic Flows About Aircraft Configurations, AIAA Paper 82–1017 (June 1982).

    Google Scholar 

  43. Steger, J. L., Dougherty, F. C. and Benek, J. A., A Chimera Grid Scheme, ASME Mini-Symposium on Advances in Grid Generation, Houston, Texas, (June 1983).

    Google Scholar 

  44. Benek, J. A., Steger, J. L. and Dougherty, F. C., A Flexible Grid Embedding Technique with Application to the Euler Equations, AIAA 83–1944 (July 13–15, 1983).

    Google Scholar 

  45. Berger, M. J., Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations, STAN-CS-82–924, Stanford University (Aug. 1982).

    Google Scholar 

  46. Dougherty, F. C., Development of a Chimera Grid Scheme with Applications to Unsteady Problems, Stanford University Dissertation, Department of Aeronautics and Astronautics, Stanford, CA (Oct. 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Birkhäuser Boston, Inc.

About this chapter

Cite this chapter

Steger, J.L., Buning, P.G. (1985). Developments in the Simulation of Compressible Inviscid and Viscous Flow on Supercomputers. In: Murman, E.M., Abarbanel, S.S. (eds) Progress and Supercomputing in Computational Fluid Dynamics. Progress in Scientific Computing, vol 6. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-5162-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5162-0_5

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-9591-4

  • Online ISBN: 978-1-4612-5162-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics