Skip to main content

Part of the book series: Progress in Scientific Computing ((PSC,volume 6))

  • 196 Accesses

Abstract

A classification of approaches to the simulation of turbulent flows according to the kind of averaging employed was given by Kline et al. (1978). This paper, concerns three types of methods: ones based on time or ensemble-averaged equations, large eddy simulation, and full simulation. Other methods are important but will not be dealt with.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berger, M., “Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations,” Report STAN-CS-82–924, Computer Science Dept., Stanford Univ., 1982.

    Google Scholar 

  • Cain, A. B., Reynolds, W. C., and Ferziger, J. H. H., “Simulation of the Transition and Early Turbulent Regions of a Free Shear Flow,” Report TF-14, Dept. of Mech. Engr., Stanford Univ., 1981.

    Google Scholar 

  • Caretto, L. S., Gosman, A. D., Patankar, S. V., and Spalding, D. B., “Two Calculation Procedures for Steady, Three-Dimensional Flows with Recirculation,” Proc. Third Intl. Conf. Num. Meth. Fluid Dyn., Paris, 1972.

    Google Scholar 

  • Cebeci, T., and Bradshaw, P., Momentum Transfer in Boundary Layers McGraw-Hill, New York, 1981.

    Google Scholar 

  • Chang, J. L. C., and Kwak, D., “On the Method of Pseudo-Compressibility for Numerically Solving Incompressible Flows,” AIAA paper 84–0252, 1984.

    Google Scholar 

  • Chorin, A. J., “A Numerical Method for Solving Incompressible Viscous Flow Problems,” J. Comp. Phys., Vol. 2, 12, 1967.

    Article  Google Scholar 

  • Ferziger, J. H., “Higher Level Simulations of Turbulent Flow,” in Computational Methods for Turbulent, Transonic, and Viscous Flows (J.-A. Essers, ed. ), Hemisphere, 1983.

    Google Scholar 

  • Kays, W. M., and Crawford, M. E., Convective Heat and Mass Transfer ( second ed. ), McGraw-Hill, New York, 1978.

    Google Scholar 

  • Kim, J., and Moin, P., “On the Numerical Solution of Time-Dependent Fluid Flows Involving Solid Boundaries,” J. Comp. Phys., Vol. 35, 301, 1980.

    Google Scholar 

  • Kline, S. J, Ferziger, J. H., and Johnston, J. P., “Calculation of Turbulent Shear Flows: Status and Ten-Year Outlook,” ASME J. Fluids Engrg., Vol. 100, 3, 1978.

    Article  Google Scholar 

  • Kline, S. J, Lilley, G. M., and Cantwell, B. J., Proceedings of the 1980–81 AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows Dept. of Mech. Engr., Stanford Univ., Stanford, CA, 1981.

    Google Scholar 

  • Leonard, B. P., “Upstream Parabolic Interpolation,” Proc. Secon GAMM Conf. on Num. Meth. In Fluid Mech., Cologne, 1977.

    Google Scholar 

  • Lowery, P. S., private communication.

    Google Scholar 

  • Moser, R. D., and Moin, P., “Direct Simulation of Turbulent Flow in a Curved Channel,” Rept. TF-20, Dept. of Mech. Engr., Stanford Univ., 1984.

    Google Scholar 

  • Raithby, G. D., “Skew Upstream Differencing Schemes for Problems Involving Fluid Flow,” Comp. Meth. Appl. Mech. Engrg., Vol. 9, 75, 1976.

    Article  Google Scholar 

  • Rodi, W., “A New Algebraic Relation for Calculating the Reynolds Stress,” ZAMM, T219, 1976.

    Google Scholar 

  • Rogallo, R. S., and Moin, P., “Numerical Simulation of Turbulent Flows,” Ann. Revs. Fluid Mechanics, Vol. 16, 99, 1984.

    Google Scholar 

  • Schumann, U, U., “Ein Untersuchung ĂĽber der Berechnung der.Turbulent Stromungen im Platten-und Rinspalt-Kanelen,” dissertation, Karlsruhe, 1973.

    Google Scholar 

  • Steger, J. L., and Kutler, P., “Implicit Finite Difference Procedures for the Computation of Vortex Wakes, ” AIAA J., Vol. 15, 581, 1977.

    Article  Google Scholar 

  • Tennekes, H., and Lumley, J. L., A First Course in Turbulence MIT Press, 1972.

    Google Scholar 

  • Vanka, S. P., and Leaf, G. K. K., “Fully Coupled Solution of Pressure-Linked Fluid Flow Equations,” Rept. ANL-83–73, Argonne Natl. Lab., 1983.

    Google Scholar 

  • Vanka, S. P., “Fully Coupled Calculation of Fluid Flows with Limited Use of Computer Storage,” Rept. ANL-83–87, Argonne Nat’l. Lab., 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Birkhäuser Boston, Inc.

About this chapter

Cite this chapter

Ferziger, J.H. (1985). Turbulent Flow Simulation: Future Needs. In: Murman, E.M., Abarbanel, S.S. (eds) Progress and Supercomputing in Computational Fluid Dynamics. Progress in Scientific Computing, vol 6. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-5162-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5162-0_14

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-9591-4

  • Online ISBN: 978-1-4612-5162-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics