Skip to main content

Viscous Flow Simulation by Finite Element Methods and Related Numerical Techniques

  • Chapter
Progress and Supercomputing in Computational Fluid Dynamics

Part of the book series: Progress in Scientific Computing ((PSC,volume 6))

Abstract

We would like to discuss in this paper some numerical methods for solving the Navier-Stokes equations modeling viscous flows. Since our experience with incompressible fluids is more important than with compressible ones, we shall discuss first the incompressible case and then show how some of the conclusions can be applied to the compressible case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Glowinski, Numerical Methods for Nonlinear, Variational Problems, Springer-Verlag, New York, 1984

    Google Scholar 

  2. J.L. Lions, Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires, Dunod, Paris, 1969.

    Google Scholar 

  3. O.A. Ladysenskava, The Mathematical Theory of Viscous Incompressible Flows, Gordon and Breach, New York, 1969.

    Google Scholar 

  4. L. Tartar, Topics in Nonlinear Analysis, Publications Mathematiques d’Orsay, Universite Paris-Sud, Departement de Mathematiques, Orsay, 1973.

    Google Scholar 

  5. R. Temam, Navier-Stokes Equations, North Holland, Amsterdam, 1977.

    Google Scholar 

  6. R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS 41, SIAM, Philadelphia, PA, 1983.

    Google Scholar 

  7. R. Rautmann (ed.), Approximation Methods for NavierStokes Problems, Lecture Notes in Mathematics, 771, Springer-Verlag, Berlin, 1980.

    Google Scholar 

  8. V. Girault, P.A. Raviart, Finite Element Approximation of Navier-Stokes Equations, Lecture notes in Mathematics, 749, Springer-Verlag, Berlin, 1979.

    Google Scholar 

  9. F. Thomasset, Implementation of Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, New York, 1931.

    Google Scholar 

  10. R. Peyret, T.D. Taylor, Computational Methods for Fluid Flow, Springer-Verlag, New York, 1932.

    Google Scholar 

  11. P.J. Roache, Computational Fluid Dynamics, Hermosa, Albuquerque, N.M., 1972.

    Google Scholar 

  12. G. Strang, On the construction and comparison of difference schemes, SIAM J.Num.Anal., 5 (1963), pp 506–517.

    Article  Google Scholar 

  13. J.T. Beale, A. Magda, Rates of convergence for viscous splitting of the Navier-Stokes equations, Math.Comp., 37, (1981), pp 243–260.

    Article  Google Scholar 

  14. R. Leveque, Time-Split Methods for Partial Differential Equations, Ph.D. Thesis, Computer Science Dept., Stanford University, Stanford, CA, 1982.

    Google Scholar 

  15. R. Leveque, J. Oliger, Numerical methods based on additive splitting for hyperbolic partial differential equations, Manuscriut NA-81–16, Numerical Analysis Project, Computer Science Dept., Stanford University, Stanford, CA, 1991.

    Google Scholar 

  16. P.L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J.Num.AnaZ., 16, (1979), pp 964–979.

    Article  Google Scholar 

  17. E. Codlewski, Methodes a pas multiples et de directions alternées pour la discretisation d’equations devolution, These de 3e cycle, Universite P. et M. Curie, Paris, 1930.

    Google Scholar 

  18. C.I. Marchuk, Methods of Numerical Mathematics, Springer-Verlan, New York, 1975.

    Google Scholar 

  19. R. Glowinski, B. Mantel, J. Periaux, Numerical solution of the time dependent. Navier-Stokes equations for incompressible viscous fluids by finite element and alternating direction methods, in Numerical Methods in Aeronautical Fluid Dynamics, P.L. Roe, Ed., Academic Press, London, 1932, pp. 309–336.

    Google Scholar 

  20. J.L. Lions, Problemes aux limites dans les equations aux derivees partielles, Presses de l’Universite de Montreal, Montreal, P.;?., Canada, 1962.

    Google Scholar 

  21. J. Necas, Les Methodes Directes en Theorie des Equations Elliptiques, Masson, Paris, 1967.

    Google Scholar 

  22. R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

    Google Scholar 

  23. J.T. Oden, J.N. Reddy, An introduction to the mathematical theory of finite elements,Wiley, New York,1976.

    Google Scholar 

  24. M.O. Bristeau, R. Glowinski, B. Mantel, J. Periaux, P. Perrier, Numerical methods for the simulation of viscous flows modeled by the Navier-Stokes equations, to appear in Finite Elements in Fluids,Vol. 6, Wiley, Chichester.

    Google Scholar 

  25. R. Glowinski, H.B. Keller, L. Reinhart, Continuation-conjugate gradient methods for the least square solution of nonlinear boundary value problems, to appear in Siam J.Scient.Stat.Comp.

    Google Scholar 

  26. D.F. Shanno, Conjugate gradient method with inexact line search, Math, of Oper. Research, 13, (1978), pp. 155–175.

    Google Scholar 

  27. A. Buckley, A. Lenir, ON-like variable storage conjugate gradients, Math. Programming, 27, (1933), pp. 155–175.

    Article  Google Scholar 

  28. J.E. Dennis, R.B. Schnabel, Quasi-Newton Methods for Nonlinear Problems, Prentice Hall, Englewood Cliffs, NJ, 1983.

    Google Scholar 

  29. A. Brandt, S. McCormick and J. Ruge, Algebraic multi-grid (FMa) for sparse matrix equations. Sparsity and Its Applications (D.J. Evans, ed. ), Cambridge University Press, 1984.

    Google Scholar 

  30. P.M. Cresho, S.T. Chan, P.L. Lee, C.D. Upson, A. modified finite element method for solving the time dependent incompressible Navier-Stokes equations. Part 1: Theory, -Int.J.Num.Meth.Fluids, 4, (1934), pp. 557–593.

    Google Scholar 

  31. N. Satofuka, Modified differential quadrature method for numerical solution of multi-dimensional flow problems, Proc. of the Int. Symposium on Applied Mathematics and Information Science, Kyoto, March 1932, pp. 5. 7–5. 14.

    Google Scholar 

  32. A. Jameson, Numerical solution of the Euler equations for compressible inviscid fluids, to appear in Proc. of INRIA Workshop on Numerical Methods for the Euler equation for compressible fluids, December 1983. SIAM publication.

    Google Scholar 

  33. J. goussebaile, J.P. Gregoire, A. Hauguel, Iterative Stokes solvers and splitting techniques for industrial flows, in Proc. of 5th Int. Symposium on Finite Elements and Flow Problems, January 23–26, Z984 ( G.F. Carey, J.T. Oden eds.) University of Texas, Tustin, 1934, pp. 213–217.

    Google Scholar 

  34. J.P. Benaue, J.P.;reaoire,.. Hauguel, M. Maxant, Application des methodes de decomposition aux calculs numeriques en hydraulique industrielle, in Computing Methods in Applied Sciences and Engineering, 1I, ( R. Glowinski, J.L. Lions eds.), North Holland, Amsterdam, 1934, pp. 471–433.

    Google Scholar 

  35. P. Hood, C. Taylor, A numerical solution of the Navier-Stokes equations using the finite element technique, Computer and Fluids, 1, (1973), pp. 73–100.

    Article  Google Scholar 

  36. A.G. Hutton, A general finite element method for vorticity and stream function applied to a laminar separated flow, Central Elasticity Generating Board Report, Research Dept., Berkeley Nuclear Laboratories, U.K., 1975.

    Google Scholar 

  37. K. Morgan, J. Periaux, F. Thomasset (eds.), Numerical Analysis of Laminar Flow Over a Step, CAAM. Workshop, Bievres, France, January 1983, Vieweg-Verlag, Braunschmeig-Wiesbaden, 1934.

    Google Scholar 

  38. D.N. Arnold, F. Brezzi, M. Fortin, A stable finite element for the Stokes equations, Instituto 5i Analisi Numerica del C.N.R., Pavia, Report 362, 1933 (to appear in Calcolo).

    Google Scholar 

  39. M. Fortin, F. Thomasset, Application of Augmented Lagrangian methods to the Stokes and Navier-Stokes equations, Augmented Lagrangian Methods, M. Fortin, R. Glowinski eds., North Holland, Amsterdam, 1933, pp. 47–95.

    Google Scholar 

  40. R.N. MacCormack, Current status of numerical solutions of the Navier-Stokes equations (these proceedings).

    Google Scholar 

  41. J.L. Steger, P.G. Buning, Developments in the simulation of compressible inviscid and viscous flow on supercomputers (these proceedings).

    Google Scholar 

  42. E. Turkel, Algorithms for the Euler and Navier-Stokes equations for supercomputers (these proceedings).

    Google Scholar 

  43. A. Matsumura, T. Nishida, Initial boundary value problems for the equations of motion in general fluids, Computing Methods in Applied Sciences and Engineering V, R. Glowinski, J.L. Lions eds., North Holland, Amsterdam, 1992, pp. 339–406.

    Google Scholar 

  44. J.P. Benque, G. Labadie, B. Latteux, Une method d’elements finish pour les equations de Saint-Venant, Proc. of 2nd Int. Conf. on Numerical Methods in Laminar and Turbulent Flows, Venice, Italy, 1981.

    Google Scholar 

  45. A. Hauguel, F. Hecht, L. Reinhart, Finite Element Solution of Shallow Water Equations by a Quasi-Direct Decomposition Procedure (to appear in Numerical Methods in Fluids).

    Google Scholar 

  46. M.O. Bristeau, R. Glowinski, B. Dimoyat, J. Periaux P. Perrier, Finite element methods for the compressible Navier-Stokes equations, AJAR paper 83–1890, AIAA CFD Conference, Danvers, MA., July Z3–Z5, 1983.

    Google Scholar 

  47. M.O. Bristeau, R. Glowinski, B. Mantel, J. Periaux, P. Perrier, Numerical methods for the time dependent compressible Navier-Stokes equations, to appear in Computing Methods in Applied Science and Engineering VI R. Glowinski, J.L. Lions eds., North Holland, Amsterdam.

    Google Scholar 

  48. M.O. Bristeau, R. Glowinski, B. Mantel, J. Periaux, P. Perrier, Finite element solution of the Navier-Stokes equations for compressible viscous fluids, Proc. of 5th Int. Conf. on Finite Elements and Flow Problems C.R. Carey, J.T. Oden eds., University of Texas, Austin, 1984, pp. 449–462.

    Google Scholar 

  49. Q.V. Dinh, R. Glowinski, B. Mantel, J. Periaux, P. Perrier, Subdomain solution of nonlinear problems in fluid dynamics on parallel processors, Computing Methods in Applied Sciences and Engineering, V, R. Glowinski, J.L. Lions eds., North Holland, Amsterdam, 1932, pp. 123–164.

    Google Scholar 

  50. O.B. Widlund, Iterative methods for elliptic problems on regions partitioned into substructures and the bi-harmonic Dirichlet problem, Computing Methods in Applied Sciences and Engineering, VI, R. Glowinski, J.L. Lions eds., North Holland, Amsterdam, 1984, pp. 33–45.

    Google Scholar 

  51. A. Lichnewsky, J.L. Lions, Super-ordinateurs: evolutions et tendances, La Vie des Sciences, Comptes-Rendus, serie generale, 1, (1984), 4, pp. 263–284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Birkhäuser Boston, Inc.

About this chapter

Cite this chapter

Glowinski, R. (1985). Viscous Flow Simulation by Finite Element Methods and Related Numerical Techniques. In: Murman, E.M., Abarbanel, S.S. (eds) Progress and Supercomputing in Computational Fluid Dynamics. Progress in Scientific Computing, vol 6. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-5162-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5162-0_10

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-9591-4

  • Online ISBN: 978-1-4612-5162-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics